Skip to main content
Log in

Insulator—metal transition and the hopping transport in epitaxial Sm0.6Nd0.4NiO3 thin films

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Epitaxial Sm0.6Nd0.4NiO3 thin films were grown on different substrates by pulsed laser deposition. X-ray diffraction indicates that for SLAO substrate, strain relaxation is accompanied by the creation of oxygen vacancies. The film resistivity on LaAlO3 and SrTiO3 substrates shows a clear insulator–metal transition (IMT) at 185 and 325 K, respectively, while the film is exclusively semiconducting on SrLaAlO4. At low temperatures, the conductivity of films deposited on SrLaAlO4 and SrTiO3 is described by the Mott variable-range hopping mechanism. With increasing film thickness, progressive tensile strain relaxation takes place, which in turn results in a gradual decrease in the IMT temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M. Bibes and A. Barthelemy: Oxide spintronics. IEEE Trans. Electron. Devices 54, 1003–1023 (2007).

    Article  CAS  Google Scholar 

  2. M. Imada, A. Fujimori, and Y. Tokura: Metal-insulator transition. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  CAS  Google Scholar 

  3. Z. Yang, Ch Ko, and Sh Ramanathan: Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011).

    Article  CAS  Google Scholar 

  4. M. Medarde: Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth). J. Phys.: Condens. Matter 9, 1679–1707 (1997).

    CAS  Google Scholar 

  5. G. Catalan: Progress in perovskite nickelate research. Phase Transit. 81, 729–749 (2008).

    Article  CAS  Google Scholar 

  6. U. Staub, G.I. Meijer, F. Fauth, R. Allenspach, J.G. Bednorz, J. Karpinski, S.M. Kazakov, L. Paolasini, and F. d’Acapito: Direct observation of charge order in an epitaxial NdNiO3 film. Phys. Rev. Lett. 88, 126402 (2002).

    Article  CAS  Google Scholar 

  7. V. Scagnoli, U. Staub, M. Janousch, A.M. Mulders, M. Shi, G.I. Meijer, S. Rosenkranz, S.B. Wilkins, L. Paolasini, J. Karpinski, S.M. Kazakov, and S.W. Lovesey: Charge disproportionation and search for orbital ordering in NdNiO3 by use of resonant x-ray diffraction. Phys. Rev. B 72, 155111 (2005).

    Article  Google Scholar 

  8. M.K. Stewart, D. Brownstead, J. Liu, M. Kareev, J. Chakhalian, and D. N. Basov: Heterostructuring and strain effects on the infrared optical properties of nickelates. Phys. Rev. B 86, 205102 (2012).

    Article  Google Scholar 

  9. L.A.L. de Almeida, G.S. Deep, A.M.N. Lima, I.A. Khreobtov, V. G. Malyarov, and H. Neff: Modeling and performance of vanadium-oxide transition edge microbolometers. Appl. Phys. Lett. 85, 3605–3607 (2004).

    Article  Google Scholar 

  10. J. Huotari, R. Bjorklund, J. Lappalainen, and A. Lloyd Spetz: Pulsed laser deposited nanostructured vanadium oxide thin film characterized as Ammonia sensors. Sens. Actuators B: Chem. 217, 22–29 (2015).

    Article  CAS  Google Scholar 

  11. P. Markov, R.E. Marvel, H.J. Conley, K.J. Miller, R.F. Haglund, and S. M. Weiss: Optically monitored electrical switching in VO2. ACS Photon. 2, 1175–1182 (2015).

    Article  CAS  Google Scholar 

  12. D. Meyers, S. Middey, M. Kareev, M. van Veenendaal, E.J. Moon, B. A. Gray, J. Liu, J.W. Freeland, and J. Chakhalian: Strain-modulated Mott transition in EuNiO3 ultrathin film. Phys. Rev. B 88, 075116 (2013).

    Article  Google Scholar 

  13. R. Eguchi, Y. Okamoto, Z. Hiroi, S. Shin, A. Chainani, Y. Tanaka, M. Matsunami, Y. Takata, Y. Nishino, K. Tamasaku, M. Yabashi, and T. Ishikawa: Structure and photoemission spectroscopy of straincontrolled metal-insulator transition in NdNiO3 thin film. J. Appl. Phys. 105, 056103 (2009).

    Article  Google Scholar 

  14. J. Liu, M. Kareev, B. Gray, J.W. Kim, P. Ryan, B. Dabrowski, J. W. Freeland, and J. Chakhalian: Strain-mediated metal-insulator transition in epitaxial ultrathin films of NdNiO3. Appl. Phys. Lett. 96, 233110 (2010).

    Article  Google Scholar 

  15. I. Nikulin, M. Novojilov, A. Kaul, S. Mudretsova, and S. Kondrashov: Oxygen nonstoichiometry of NdNiO3-d and SmNiO3-d. Mater. Res. Bull. 39, 775–791 (2004).

    Article  CAS  Google Scholar 

  16. F. Conchon, A. Boulle, R. Guinebretiere, C. Girardot, S. Pignard, J. Kreisel, F. Weiss, E. Dooryhee, and J.-L. Hodeau: Effect of tensile and compressive strains on the transport properties of SmNiO3 layers epitaxially grown on (001) SrTiO3 and LaAlO3 substrates. Appl. Phys. Lett. 91, 192110 (2007).

    Article  Google Scholar 

  17. H. Huang, Zh Luo, Y. Yang, Y. Yun, M. Yang, D. Meng, H. Wang, S. Hu, J. Bao, Y. Lu, and Ch Gao: DC-current metal-insulator transition in epitaxial Sm0.6Nd0.4NiO3/LaAlO3 thin film. AIP Adv. 4, 057102 (2014).

    Article  Google Scholar 

  18. H. Huang, Zh Luo, Y. Yang, M. Yang, H. Wang, G. Pan, Y. Lu, and Ch Gao: The effect of growth oxygen pressure on the metal-insulator transition of ultrathin Sm0.6Nd0.4NiO3-d epitaxial films. RSC Adv. 4, 55082 (2014).

    Article  CAS  Google Scholar 

  19. C. Girardot, J. Kreisel, S. Pignard, N. Caillault, and F. Weiss: Raman scattering investigation across the magnetic and metal-insulator transition in rare earth nickelate RNiO3 (R = Sm, Nd) thin films. Phys. Rev. B 78, 104101 (2008).

    Article  Google Scholar 

  20. J. Liu, M. Kargarian, M. Kareev, B. Gray, P.J. Ryan, A. Cruz, N. Tahir, Y.-D. Chuang, J. Guo, J.M. Rondinelli, J.W. Freeland, G.A. Fiete, and J. Chakhalian: Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films. Nat. Commun. 4, 2714 (2013).

    Article  Google Scholar 

  21. E. Mikheev, A.J. Hauser, B. Himmetoglu, N.E. Moreno, A. Janotti, C. G. Van de Walle, and S. Stemmer: Tuning bad metal and non-Fermi liquid behavior in a Mott material: rare-earth nickelate thin films. Sci. Adv. 1, 10 (2015).

    Article  Google Scholar 

  22. S. Catalano, M. Gibert, V. Bisogni, O.E. Peil, F. He, R. Sutarto, M. Viret, P. Zubko, R. Scherwitzl, A. Georges, G. A. Sawatzky, T. Schmitt, and J.-M. Triscone: Electronic transitions in strained SmNiO3 thin films. APL Mater. 2, 116110 (2014).

    Article  Google Scholar 

  23. G. Catalan, R.M. Bowman, and J.M. Gregg: Metal-insulator transitions in NdNiO3 thin films. Phys. Rev. B 62, 7892 (2000).

    Article  CAS  Google Scholar 

  24. L. Zhang, H.J. Gardner, X.G. Chen, V.R. Singh, and X. Hong: Strain induced modulation of the correlated transport in epitaxial Sm0.5Nd0.5NiO3 thin films. J. Phys.: Condens. Matter 27, 132201 (2015).

    CAS  Google Scholar 

  25. L. Zhang, X.G. Chen, H.J. Gardner, M.A. Koten, J.E. Shield, and X. Hong: Effect of strain on ferroelectric field effect in strongly correlated oxide Sm0.5Nd0.5NiO3. Appl. Phys. Lett. 107, 152906 (2015).

    Article  Google Scholar 

  26. V.F. Gantmakher: Electrons and Disorder in Solids (Oxford University Press, New York, USA, 2005), pp. 58–73.

    Book  Google Scholar 

  27. N.F. Mott: Metal-Insulator Transitions (Taylor and Francis, London, UK, 1990), pp. 5–55.

    Google Scholar 

  28. Y. Zhang, P. Dai, M. Levy, and M.P. Sarachik: Probind the coulomb gap in insulating n-type CdSe. Phys. Rev. Lett. 64, 2687 (1990).

    Article  CAS  Google Scholar 

  29. N.F. Mott and E.A. Davis: Electronics Processes in Non-Crystalline Materials, 2nd ed. (Oxford, Clarendon, England, 2012), pp. 7–64.

    Google Scholar 

  30. D.K. Paul and S.S. Mitra: Evaluation of Mott’s parameters for hopping conduction in amorphous Ge, Si, and Se-Si. Phys. Rev. Lett. 31, 1000 (1973).

    Article  CAS  Google Scholar 

  31. P.-H. Xiang, N. Zhong, C.-G. Duan, X.D. Tang, Z.G. Hu, P.X. Yang, Z. Q. Zhu, and J.H. Chu: Strain controlled metal-insulator transition in epitaxial NdNiO3 thin films. J. Appl. Phys. 114, 243713 (2013).

    Article  Google Scholar 

  32. K. Ramadoss, N. Mandal, X. Dai, Z. Wan, Y. Zhou, L. Rokhinson, Y. P. Chen, J. Hu, and S. Ramanathan: Sign reversal of magnetoresistance in a perovskite nickelate by electron doping. Phys. Rev. B 94, 235124 (2016).

    Article  Google Scholar 

  33. A.J. Hauser, E. Mikheev, N.E. Moreno, J. Hwang, J.Y. Zhang, and S. Stemmer: Correlation between stoichiometry, strain, and metal-insulator transitions of NdNiO3 films. Appl. Phys. Lett. 106, 092104 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Chaker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torriss, B., Margot, J. & Chaker, M. Insulator—metal transition and the hopping transport in epitaxial Sm0.6Nd0.4NiO3 thin films. MRS Communications 8, 183–188 (2018). https://doi.org/10.1557/mrc.2018.18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.18

Navigation