Skip to main content
Log in

Dirac plasmons and beyond: the past, present, and future of plasmonics in 3D topological insulators

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We review progress studying unique plasmonics in topological insulators (TIs). First, we describe exfoliation and deposition synthesis approaches. TI materials have substantially improved: it is now possible to grow samples with few trivial electrons and controllable doping. We then describe the theory behind the unique behavior of the coupled, 2D Dirac plasmons. While reviewing experimental efforts, we note that Dirac plasmons have been conclusively demonstrated in TIs and they show remarkable properties including long lifetimes, large mode indices, and huge modulation depths. Finally, we describe the opportunities that are present now that high-quality materials can be obtained, including spin and nanoparticle plasmons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, and Z.-X. Shen: Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009).

    CAS  Google Scholar 

  2. Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan: Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009).

    CAS  Google Scholar 

  3. A. Bansil, H. Lin, and T. Das: Colloquium: topological band theory. Rev. Mod. Phys. 88, 21004 (2016).

    Google Scholar 

  4. D. Pesin and A.H. MacDonald: Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012).

    CAS  Google Scholar 

  5. M.A. Tumelero, R. Faccio, and A.A. Pasa: The role of interstitial native defects in the topological insulator Bi2Se3. J. Phys. Condens. Matter 28, 425801 (2016).

    Google Scholar 

  6. Y. Ando: Topological insulator materials. J. Phys. Soc. Jpn. 82, 102001 (2013).

    Google Scholar 

  7. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  8. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102, 10451–10453 (2005).

    CAS  Google Scholar 

  9. D. Teweldebrhan, V. Goyal, and A.A. Balandin: Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett. 10, 1209–1218 (2010).

    CAS  Google Scholar 

  10. M.Z. Hossain, S.L. Rumyantsev, K.M.F. Shahil, D. Teweldebrhan, M. Shur, and A.A. Balandin: Low-frequency current fluctuations in “graphene-like” exfoliated thin-films of bismuth selenide topological insulators. ACS Nano 5, 2657–2663 (2011).

    CAS  Google Scholar 

  11. D. Teweldebrhan, V. Goyal, M. Rahman, and A.A. Balandin: Atomically-thin crystalline films and ribbons of bismuth telluride. Appl. Phys. Lett. 96, 053107 (2010).

    Google Scholar 

  12. K.M.F. Shahil, M.Z. Hossain, V. Goyal, and A.A. Balandin: Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials. J. Appl. Phys. 111, 054305 (2012).

  13. L. Sun, Z. Lin, J. Peng, J. Weng, Y. Huang, and Z. Luo: Preparation of few-layer bismuth selenide by liquid-phase-exfoliation and its optical absorption properties. Sci. Rep. 4, 4794 (2014).

    Google Scholar 

  14. L. Ren, X. Qi, Y. Liu, G. Hao, Z. Huang, X. Zou, L. Yang, J. Li, and J. Zhong: Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route. J. Mater. Chem. 22, 4921 (2012).

    CAS  Google Scholar 

  15. M.S. Sokolikova, P.C. Sherrell, P. Palczynski, V.L. Bemmer, and C. Mattevi: Room-temperature growth of colloidal Bi2Te3 nanosheets. Chem. Commun. 53, 8026 (2017).

    CAS  Google Scholar 

  16. D. Kong, W. Dang, J.J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui: Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 10, 2245–2250 (2010).

    CAS  Google Scholar 

  17. H. Cao, R. Venkatasubramanian, C. Liu, J. Pierce, H. Yang, M. Zahid Hasan, Y. Wu, and Y.P. Chen: Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition. Appl. Phys. Lett. 101, 162104 (2012).

    Google Scholar 

  18. X. Guo, Z.J. Xu, H.J.C. Liu, B. Zhao, X.Q. Dai, H.T. He, J.N. Wang, H.J.C. Liu, W.K. Ho, and M.H. Xie: Single domain Bi2Se3 films grown on InP(111)A by molecular-beam epitaxy. Appl. Phys. Lett. 102, 151604 (2013).

    Google Scholar 

  19. T. Ginley, Y. Wang, and S. Law: Topological insulator film growth by molecular beam epitaxy: a review. Crystals 6, 154 (2016).

    Google Scholar 

  20. N. Koirala, M. Brahlek, M. Salehi, L. Wu, J. Dai, J. Waugh, T. Nummy, M.G. Han, J. Moon, Y. Zhu, D. Dessau, W. Wu, N.P. Armitage, and S. Oh: Record surface state mobility and quantum hall effect in topological insulator thin films via interface engineering. Nano Lett. 15, 8245–8249 (2015).

    CAS  Google Scholar 

  21. Y. Wang, T.P. Ginley, and S. Law: Growth of high-quality Bi2Se3 topological insulators using (Bi1−xInx)Se3 buffer layers. J. Vac. Sci. Technol., B 36, 02D101 (2018).

    Google Scholar 

  22. T.P. Ginley and S. Law: Growth of Bi2Se3 topological insulator films using a selenium cracker source. J. Vac. Sci. Technol., B 34, 02L105 (2016).

    Google Scholar 

  23. H.D. Li, Z.Y. Wang, X. Kan, X. Guo, H.T. He, Z.Y. Wang, J.N. Wang, T.L. Wong, N. Wang, and M.H. Xie: The van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: an approach for preparing high-quality thin films of a topological insulator. New J. Phys. 12, 103038 (2010).

    Google Scholar 

  24. Y. Liu, M. Weinert, and L. Li: Spiral growth without dislocations: molecular beam epitaxy of the topological insulator Bi2Se3 on epitaxial graphene/SiC(0001). Phys. Rev. Lett. 108, 115501 (2012).

    CAS  Google Scholar 

  25. Y.S. Hor, J.G. Checkelsky, D. Qu, N.P. Ong, and R.J. Cava: Superconductivity and non-metallicity induced by doping the topological insulators Bi2Se3 and Bi2Te3. J. Phys. Chem. Solids 72, 572–576 (2011).

    CAS  Google Scholar 

  26. Y.H. Choi, N.H. Jo, K.J. Lee, H.W. Lee, Y.H. Jo, J. Kajino, T. Takabatake, K.T. Ko, J.H. Park, and M.H. Jung: Simple tuning of carrier type in topological insulator Bi2Se3 by Mn doping. Appl. Phys. Lett. 101, 152103 (2012).

  27. Y.S. Hor, A.J. Williams, J.G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H.W. Zandbergen, A. Yazdani, N.P. Ong, and R.J. Cava: Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 104, 057001 (2010).

    CAS  Google Scholar 

  28. Z. Liu, X. Yao, J. Shao, M. Zuo, L. Pi, S. Tan, C. Zhang, and Y. Zhang: Superconductivity with topological surface state in SrxBi2Se3. J. Am. Chem. Soc. 137, 10512–10515 (2015).

    CAS  Google Scholar 

  29. C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu, X.-C. Ma, and Q.-K. Xue: Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Google Scholar 

  30. C.Z. Chang, W. Zhao, D.Y. Kim, H. Zhang, B.A. Assaf, D. Heiman, S.C. Zhang, C. Liu, M.H.W. Chan, and J.S. Moodera: High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    CAS  Google Scholar 

  31. Y. Zhao, H. Liu, X. Guo, Y. Jiang, Y. Sun, H. Wang, Y. Wang, H.D. Li, M.H. Xie, X.C. Xie, and J. Wang: Crossover from 3D to 2D quantum transport in Bi2Se3/In2Se3 superlattices. Nano Lett. 14, 5244–5249 (2014).

    CAS  Google Scholar 

  32. Z.Y. Wang, X. Guo, H.D. Li, T.L. Wong, N. Wang, and M.H. Xie: Superlattices of Bi2Se3/In2Se3: Growth characteristics and structural properties. Appl. Phys. Lett. 99, 23112 (2011).

    Google Scholar 

  33. C.Z. Chang, P. Tang, X. Feng, K. Li, X.C. Ma, W. Duan, K. He, and Q.K. Xue: Band engineering of Dirac surface states in topological-insulator-based van der Waals heterostructures. Phys. Rev. Lett. 115, 136801 (2015).

    Google Scholar 

  34. Z. Chen, T.A. Garcia, L.C. Hernandez-Mainet, L. Zhao, H. Deng, L. Krusin-Elbaum, and M.C. Tamargo: Molecular beam epitaxial growth and characterization of Bi2Se3/II-VI semiconductor heterostructures. Appl. Phys. Lett. 105, 242105 (2014).

    Google Scholar 

  35. T. Stauber and G. Gómez-Santos: Plasmons in layered structures including graphene. New J. Phys. 14, 105018 (2012).

    Google Scholar 

  36. T. Stauber, G. Gómez-Santos, and L. Brey: Spin-charge separation of plasmonic excitations in thin topological insulators. Phys. Rev. B 88, 205427 (2013).

    Google Scholar 

  37. M.A. Poyli, M. Hrtoň, I.A. Nechaev, A.Y. Nikitin, P.M. Echenique, V.M. Silkin, J. Aizpurua, and R. Esteban: Controlling surface charge and spin density oscillations by Dirac plasmon interaction in thin topological insulators. Phys. Rev. B 97, 115420 (2018).

    CAS  Google Scholar 

  38. T. Stauber, G. Gómez-Santos, and L. Brey: Plasmonics in topological insulators: spin-charge separation, the influence of the inversion layer, and phonon-plasmon coupling. ACS Photonics 4, 2978–2988 (2017).

    CAS  Google Scholar 

  39. T. Stauber: Plasmonics in Dirac systems: from graphene to topological insulators. J. Phys. Condens. Matter 26, 123201 (2014).

    Google Scholar 

  40. Y. Deshko, L. Krusin-Elbaum, V. Menon, A. Khanikaev, and J. Trevino: Surface plasmon polaritons in topological insulator nano-films and superlattices. Opt. Express 24, 7398–7410 (2016).

    CAS  Google Scholar 

  41. L. Wu, W.K. Tse, M. Brahlek, C.M. Morris, R.V. Aguilar, N. Koirala, S. Oh, and N.P. Armitage: High-resolution Faraday rotation and electron-phonon coupling in surface states of the Bulk-insulating topological insulator Cu0.02Bi2Se3. Phys. Rev. Lett. 115, 217602 (2015).

    Google Scholar 

  42. A. Politano, V.M. Silkin, I.A. Nechaev, M.S. Vitiello, L. Viti, Z.S. Aliev, M.B. Babanly, G. Chiarello, P.M. Echenique, and E.V. Chulkov: Interplay of surface and Dirac plasmons in topological insulators: the case of Bi2Se3. Phys. Rev. Lett. 115, 216802 (2015).

    CAS  Google Scholar 

  43. S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J.H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, and H. Choi: Ultra-high modulation depth exceeding 2, 400% in optically controlled topological surface plasmons. Nat. Commun. 6, 8814 (2015).

    CAS  Google Scholar 

  44. T.P. Ginley and S. Law: Coupled Dirac plasmons in topological insulators. Adv. Opt. Mater. 6, 1800113 (2018).

    Google Scholar 

  45. P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, and S. Lupi: Observation of Dirac plasmons in a topological insulator. Nat. Nanotechnol. 8, 556–560 (2013).

    Google Scholar 

  46. A.N. Grigorenko, M. Polini, and K.S. Novoselov: Graphene plasmonics. Nat. Photonics 6, 749–758 (2012).

    CAS  Google Scholar 

  47. V.W. Brar, M.S. Jang, M. Sherrott, J.J. Lopez, and H.A. Atwater: Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 13, 2541–2547 (2013).

    CAS  Google Scholar 

  48. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, and F. Wang: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011).

    CAS  Google Scholar 

  49. Z. Fei, O. Gregory, O. Andreev, O.W. Bao, L.M. Zhang, A.S. Mcleod, C. Wang, M.K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M.M. Fogler, M.J. Tauber, A.H. Castro-Neto, C.N. Lau, F. Keilmann, and D.N. Basov: Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    CAS  Google Scholar 

  50. J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea: Coupling light into graphene plasmons through surface acoustic waves. Phys. Rev. Lett. 111, 237405 (2013).

    Google Scholar 

  51. T.R. Zhan, F.Y. Zhao, X.H. Hu, X.H. Liu, and J. Zi: Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies. Phys. Rev. B 86, 165416 (2012).

    Google Scholar 

  52. L. Vicarelli, M.S. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci: Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012).

    CAS  Google Scholar 

  53. I.V. Iorsh, I.S. Mukhin, I.V. Shadrivov, P.A. Belov, and Y.S. Kivshar: Hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B 87, 75416 (2013).

    Google Scholar 

  54. S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong: Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 43, 3426 (2014).

    CAS  Google Scholar 

  55. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan: Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011).

    Google Scholar 

  56. V. Giannini, Y. Francescato, H. Amrania, C.C. Phillips, and S.A. Maier: Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. Nano Lett. 11, 2835–2840 (2011).

    CAS  Google Scholar 

  57. M. Autore, H. Engelkamp, F. D’Apuzzo, A. Di Gaspare, P. Di Pietro, I. Lo Vecchio, M. Brahlek, N. Koirala, S. Oh, and S. Lupi: Observation of magnetoplasmons in Bi2Se3 topological insulator. ACS Photonics 2, 1231–1235 (2015).

    CAS  Google Scholar 

  58. J.-Y. Ou, J.-K. So, G. Adamo, A. Sulaev, L. Wang, and N.I. Zheludev: Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2. Nat. Commun. 5, 5139 (2014).

  59. C. In, S. Sim, B. Kim, H. Bae, H. Jung, W. Jang, M. Son, J. Moon, M. Salehi, S.Y. Seo, A. Soon, M.H. Ham, H. Lee, S. Oh, D. Kim, M.H. Jo, and H. Choi: Control over electron-phonon interaction by Dirac plasmon engineering in the Bi2Se3 topological insulator. Nano Lett. 18, 734–739 (2018).

    CAS  Google Scholar 

  60. R.V. Aguilar, A. V. Stier, W. Liu, L.S. Bilbro, D.K. George, N. Bansal, L. Wu, J. Cerne, A.G. Markelz, S. Oh, and N.P. Armitage: Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3. Phys. Rev. Lett.. 108, 087403 (2012).

    Google Scholar 

  61. M. Autore, F. D’Apuzzo, A. Di Gaspare, V. Giliberti, O. Limaj, P. Roy, M. Brahlek, N. Koirala, S. Oh, F.J. García de Abajo, and S. Lupi: Plasmon-phonon interactions in topological insulator microrings. Adv. Opt. Mater. 3, 1257–1263 (2015).

    CAS  Google Scholar 

  62. R.F. Egerton: Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009).

  63. S.C. Liou, M.-W. Chu, R. Sankar, F.-T. Huang, G.J. Shu, F.C. Chou, and C.H. Chen: Plasmons dispersion and nonvertical interband transitions in single crystal Bi2Se3 investigated by electron energy-loss spectroscopy. Phys. Rev. B 87, 85126 (2013).

    Google Scholar 

  64. I.A. Nechaev, I. Aguilera, V. De Renzi, A. di Bona, A. Lodi Rizzini, A.M. Mio, G. Nicotra, A. Politano, S. Scalese, Z.S. Aliev, M.B. Babanly, C. Friedrich, S. Blügel, and E.V. Chulkov: Quasiparticle spectrum and plasmonic excitations in the topological insulator Sb2Te3. Phys. Rev. B 91, 245123 (2015).

    Google Scholar 

  65. A. Kogar, S. Vig, A. Thaler, M.H. Wong, Y. Xiao, D. Reig-i-Plessis, G.Y. Cho, T. Valla, Z. Pan, J. Schneeloch, R. Zhong, G.D. Gu, T.L. Hughes, G.J. MacDougall, T.-C. Chiang, and P. Abbamonte: Surface collective modes in the topological insulators Bi2Se3 and Bi0.5Sb1.5Te3−xSex. Phys. Rev. Lett. 115, 257402 (2015).

    CAS  Google Scholar 

  66. X. Jia, S. Zhang, R. Sankar, F.-C. Chou, W. Wang, K. Kempa, E.W. Plummer, J. Zhang, X. Zhu, and J. Guo: Anomalous acoustic plasmon mode from topologically protected states. Phys. Rev. Lett. 119, 136805 (2017).

    Google Scholar 

  67. Y.D. Glinka, S. Babakiray, and D. Lederman: Plasmon-enhanced electron-phonon coupling in Dirac surface states of the thin-film topological insulator Bi2Se3. J. Appl. Phys. 118, 135713 (2015).

    Google Scholar 

  68. Y.D. Glinka, S. Babakiray, T.A. Johnson, M.B. Holcomb, D. Lederman, and R. Merlin: Nonlinear optical observation of coherent acoustic Dirac plasmons in thin-film topological insulators. Nat. Commun. 7, 13054 (2016).

    CAS  Google Scholar 

  69. J.G. Checkelsky, Y.S. Hor, R.J. Cava, and N.P. Ong: Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. Phys. Rev. Lett. 106, 196801 (2011).

    CAS  Google Scholar 

  70. P.D.C. King, R.C. Hatch, M. Bianchi, R. Ovsyannikov, C. Lupulescu, G. Landolt, B. Slomski, J.H. Dil, D. Guan, J.L. Mi, E.D.L. Rienks, J. Fink, A. Lindblad, S. Svensson, S. Bao, G. Balakrishnan, B.B. Iversen, J. Osterwalder, W. Eberhardt, F. Baumberger, and P. Hofmann: Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3. Phys. Rev. Lett. 107, 096802 (2011).

    CAS  Google Scholar 

  71. J. Xiong, Y. Khoo, S. Jia, R.J. Cava, and N.P. Ong: Tuning the quantum oscillations of surface Dirac electrons in the topological insulator Bi2Te2Se by liquid gating. Phys. Rev. B 88, 035128 (2013).

    Google Scholar 

  72. Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod, M. Wagner, L.M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M.M. Fogler, A.H. Castro Neto, C.N. Lau, F. Keilmann, and D.N. Basov: Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    CAS  Google Scholar 

  73. W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P.M. Ajayan, J. Kono, and Q. Xu: Excitation and active control of propagating surface plasmon polaritons in graphene. Nano Lett. 13, 3698–3702 (2013).

    CAS  Google Scholar 

  74. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovi, A. Centeno, A. Pesquera, P. Godignon, A.Z. Elorza, N. Camara, F. Javier García De Abajo, R. Hillenbrand, and F.H.L. Koppens: Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    CAS  Google Scholar 

  75. C.A. Ullrich and M.E. Flatte: Intersubband spin-density excitations in quantum wells with Rashba spin splitting. Phys. Rev. B 66, 205305 (2011).

    Google Scholar 

  76. L.I. Magarill, A.V. Chaplik, and M.V. Éntin: Spin response of 2D electrons to a lateral electric field. Semiconductors 35, 1081–1087 (2001).

    CAS  Google Scholar 

  77. L.I. Magarill, A.V. Chaplik, and M.V. Éntin: Spin-plasmon oscillations of the two-dimensional electron gas. J. Exp. Theor. Phys. 92, 153–158 (2001).

    CAS  Google Scholar 

  78. C.A. Ullrich and M.E. Flatte: Anisotropic splitting of intersubband spin plasmons in quantum wells with bulk and structural inversion asymmetry. Phys. Rev. B 68, 235310 (2003).

    Google Scholar 

  79. S. Raghu, S.B. Chung, X. Qi, and S. Zhang: Collective modes of a helical liquid. Phys. Rev. Lett. 104, 116401 (2010).

  80. D.K. Efimkin, Y.E. Lozovik, and A.A. Sokolik: Collective excitations on a surface of topological insulator. Nanoscale Res. Lett. 7, 163 (2012).

    Google Scholar 

  81. T. Stauber, G. Gómez-Santos, and L. Brey: Plasmonics in topological insulators: spin-charge separation, the influence of the inversion layer, and phonon-plasmon coupling. ACS Photonics 4, 2978–2988 (2017).

    CAS  Google Scholar 

  82. D.K. Efimkin, Y.E. Lozovik, and A.A. Sokolik: Spin-plasmons in topological insulator. J. Magn. Magn. Mater. 324, 3610–3612 (2012).

    CAS  Google Scholar 

  83. I. Appelbaum, H.D. Drew, M.S. Fuhrer, I. Appelbaum, H.D. Drew, and M.S. Fuhrer: Proposal for a topological plasmon spin rectifier. Appl. Phys. Lett. 98, 23103 (2011).

    Google Scholar 

  84. T. Kondo, Y. Nakashima, Y. Ota, Y. Ishida, W. Malaeb, K. Okazaki, S. Shin, M. Kriener, S. Sasaki, K. Segawa, and Y. Ando: Anomalous dressing of Dirac fermions in the topological surface state of Bi2Se3, Bi2Te3, and Cu-doped Bi2Se3. Phys. Rev. Lett. 110, 217601 (2013).

    Google Scholar 

  85. A. Cameron, P. Riblet, and A. Miller: Spin gratings and the measurement of electron drift mobility in multiple quantum well semiconductors. Phys. Rev. Lett. 76, 4793–4796 (1996).

    CAS  Google Scholar 

  86. J.D. Koralek, C.P. Weber, J. Orenstein, B.A. Bernevig, S. Zhang, S. Mack, and D.D. Awschalom: Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009).

    CAS  Google Scholar 

  87. M.Q. Weng, M.W. Wu, and H.L. Cui: Spin relaxation in n-type GaAs quantum wells with transient spin grating. J. Appl. Phys. 103, 063714 (2008).

    Google Scholar 

  88. Y.-P. Lai, I.-T. Lin, K.-H. Wu, and J.-M. Liu: Plasmonics in topological insulators. Nanomater. Nanotechnol. 4, 13 (2014).

  89. J.W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik: Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2012).

    CAS  Google Scholar 

  90. H.Z. Lu, W.Y. Shan, W. Yao, Q. Niu, and S.Q. Shen: Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys. Rev. B 81, 115407 (2010).

    Google Scholar 

  91. P. Hosur: Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309 (2011).

    Google Scholar 

  92. K.-I. Imura, Y. Yoshimura, Y. Takane, and T. Fukui: Spherical topological insulator. Phys. Rev. B 86, 235119 (2012).

  93. A.C. Durst: Disorder-induced density of states on the surface of a spherical topological insulator. Phys. Rev. B 93, 245424 (2016).

    Google Scholar 

  94. A. Kundu, A. Zazunov, A.L. Yeyati, T. Martin, and R. Egger: Energy spectrum and broken spin-surface locking in topological insulator quantum dots. Phys. Rev. B 83, 125429 (2011).

    Google Scholar 

  95. G. Siroki, P.D. Haynes, D.K.K. Lee, and V. Giannini: Protection of surface states in topological nanoparticles. Phys. Rev. Mater. 1, 24201 (2017).

    Google Scholar 

  96. G. Siroki, D.K.K. Lee, P.D. Haynes, and V. Giannini: Single-electron induced surface plasmons on a topological nanoparticle. Nat. Commun. 7, 12375 (2016).

    CAS  Google Scholar 

  97. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A.C. Ferrari: Production and processing of graphene and 2d crystals. Mater. Today 15, 564–589 (2012).

    CAS  Google Scholar 

  98. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, and J.N. Coleman: Liquid exfoliation of layered materials. Science 340, 1226419–1226419 (2013).

    Google Scholar 

Download references

Acknowledgments

T.G., Z.W., and S.L. acknowledge funding from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE- SC0017801). Y.W. and S.L. acknowledge funding from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE- SC0016380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Law.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginley, T., Wang, Y., Wang, Z. et al. Dirac plasmons and beyond: the past, present, and future of plasmonics in 3D topological insulators. MRS Communications 8, 782–794 (2018). https://doi.org/10.1557/mrc.2018.173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.173

Navigation