Skip to main content
Log in

A novel approach to study the conductivity behavior of CaCu3Ti4O12 using scanning probe microscopy technique

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Herein, we show that scanning probe microscopy (SPM) is an effective tool permitting to disclose the nature of the colossal dielectric permittivity characteristic of CaCu3Ti4O12 (CCTO) compound. SPM data confirm the existence of micro- and nanoscale barrier layer capacitance mechanisms which simultaneously contribute to the electrical conductivity of the material. The former mechanism is associated with the potential grain-to-grain barriers. The latter mechanism involves the barriers created by intragrain structural defects. The results of the SPM study shed new light on the origin of the colossal dielectric constant in CCTO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, and A. Loidl: Colossal dielectric constants in transition-metal oxides. Eur. Phys. J. Spec. Top 180, 61–89 (2009).

    Article  Google Scholar 

  2. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S.M. Shapiro: Giant dielectric constant response in a copper-titanate. Solid State Commun. 115, 217–220 (2000).

    Article  CAS  Google Scholar 

  3. D.C. Sinclair and A.R. West: Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850 (1989).

    Article  CAS  Google Scholar 

  4. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, and D.C. Sinclair: Effects of sintering temperature on the internal barrier layer capacitor (MBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32, 3313–3323 (2012).

    Article  CAS  Google Scholar 

  5. S. Krons, P. Lunkenheimer, S.G. Ebbinghause, and A. Loidl: Colossal dielectric constants in single-crystalline and ceramic CaCu3Ti4O12 investigated by broadband dielectric spectroscopy. J. Appl. Phys. 103, 084107 (2008).

    Article  Google Scholar 

  6. M. Li, Z. Shen, M. Nygren, A. Feteira, D.C. Sinclair, and A.R. West: Origin(s) of the apparent high permittivity in CaCu3Ti4O12 ceramics: clarification on the contributions from internal barrier layer capacitor and sample-electrode contact effects. J. Appl. Phys. 106, 104106 (2009).

    Article  Google Scholar 

  7. M.H. Whangbo and M.A. Subramanian: Structural model of planar defects in CaCu3Ti4O12 exhibiting a giant dielectric constant. Chem. Mater. 18, 3257–3260 (2006).

    Article  CAS  Google Scholar 

  8. P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramírez, W.C. Ribeiro, E. Longo, and J.A. Varela: A polaronic stacking fault defect model for CaCu3Ti4O12 material: an approach for the origin of the huge dielectric constant and semiconducting coexistent features. J. Phys. D Appl. Phys. 42, 055404 (2009).

    Article  Google Scholar 

  9. T. Fang and H.K. Shiau: Mechanism for developing the boundary barrier layers of CaCu3Ti4O12. J. Am. Ceram. Soc. 87, 2072–2079 (2004).

    Article  CAS  Google Scholar 

  10. T.-T. Fang and C.P. Liu: Evidence of the internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12. Chem. Mater. 17, 5167–5171 (2005).

    Article  CAS  Google Scholar 

  11. F. Amaral, C.P.L. Rubinger, M.A. Valente, L.C. Costa, and R.L. Moreira: Enhanced dielectric response of GeO2-doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 105, 034109 (2009).

    Article  Google Scholar 

  12. A. Le Bail, H. Duroy, and J.L. Fourquet: Ab-initio structure determination of LiSbWO8 by x-ray powder diffraction. Mater. Res. Bull. 23, 447–452 (1988).

    Article  Google Scholar 

  13. J. Rodríguez-Carvajal: Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 192, 55–69 (1993).

    Article  Google Scholar 

  14. A.K. Jonscher: Dielectric relaxation in solids. J. Phys. D Appl. Phys. 32, 14 (1999).

    Article  Google Scholar 

  15. O. Bidault, M. Maglione, M. Actis, M. Kchikech, and B. Salce: Polaronic relaxation in perovskites. Phys. Rev. B 52, 4191 (1995).

    Article  CAS  Google Scholar 

  16. T. van Dijk and A.J. Burggraaf: Grain boundary effects. Phys. Status Solidi (a) 63, 229 (1981).

    Article  Google Scholar 

  17. F. Amaral, L.C. Costa, M.A. Valente, A.J.S. Fernandes, N. Franco, E. Alves, and F.M. Costa: Colossal dielectric constant of poly- and single-crystalline CaCu3Ti4O12 fibers grown by the laser floating zone technique. Acta Mater. 59, 102 (2011).

    Article  CAS  Google Scholar 

  18. G. Du, F. Wei, W. Li, and N. Chen: Co-doping effects of A-site Y3+ and B-site Al3+ on the microstructures and dielectric properties of CaCu3Ti4O12 ceramics. J. Eur. Ceram. Soc. 37, 4653 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Fundacao para a Ciencia e a Tecnologia (FCT), through the projects UID/CTM/50025/2013 and UID/FIS/04564/2016, also co-funded by FEDER/COMPETE. M.S.I. and V.A.K. are grateful to the FCT for financial support through the projects CENTRO-01-0145-FEDER-000014 (MATIS) and IF/00819/2014/CP1223/CT0011. Access to TAIL-UC facility funded under QREN-Mais Centro project ICT_2009_02_012_1890 is acknowledged as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ivanov.

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2018.151|url|}.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.S., Amaral, F., Khomchenko, V.A. et al. A novel approach to study the conductivity behavior of CaCu3Ti4O12 using scanning probe microscopy technique. MRS Communications 8, 932–937 (2018). https://doi.org/10.1557/mrc.2018.151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.151

Navigation