Skip to main content

Advertisement

Log in

Nanohybrid-sensitized photoelectrochemical cells for solar-to-hydrogen conversion

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This article reviews the semiconductor and metal-based nanohybrid-sensitized photoelectrochemical (PEC) cells for hydrogen generation from water. The nanoscale hybridization of sensitizers in the photoanode can enhance light harvesting, interfacial charge transfer, charge separation, and induce a catalytic effect in dependence on the kind of the components and interfacial junction state. Subsequent to the introduction, second and third sections present the basic structure and design of the nanohybrid-sensitized PEC cell. Fourth section deals with the effect of the interfacial bond between quantum dots and TiO2 on the electron injection process. Fifth section mainly describes the formation of heteroepitaxial junction between the components of nanohybrids. In the sixth section, the state-of-the-art nanohybrid-sensitized PEC cells are treated with a particular emphasis placed on the interface state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Scheme 3
Figure 2
Figure 3
Scheme 4
Figure 4
Figure 5
Figure 6
Scheme 5
Figure 7
Scheme 6
Scheme 7

Similar content being viewed by others

References

  1. F. E. Osterloh: Inorganic materials as catalysts for photoelectrochemical splitting of water. Chem. Mater. 20, 35 (2008).

    CAS  Google Scholar 

  2. A. Kudo and Y. Miseki: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).

    CAS  Google Scholar 

  3. Y. Tachibana, L. Vayssieres, and J. R. Durrant: Artificial photosynthesis for water-splitting. Nat. Photonics 6, 511 (2012).

    CAS  Google Scholar 

  4. T. Hisatomi, J. Kubota, and K. Domen: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520 (2014).

    CAS  Google Scholar 

  5. D. M. Fabian, S. Hu, N. Singh, F. A. Houle, T. Hisatomi, K. Domen, F. E. Osterlohf, and S. Ardo: Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8, 2825 (2015).

    CAS  Google Scholar 

  6. P. Lianos: Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity abd hydrogen. Appl. Catal. B Environ. 210, 235 (2017).

    CAS  Google Scholar 

  7. S. Sahai, A. Ikram, S. Rai, R. Shrivastav, S. Dass, and V. R. Satsangi: Quantum dots sensitization for photoelectrochemical generation of hydrogen: a review. Renewable Sustainable Energy Rev. 68, 19 (2017).

    CAS  Google Scholar 

  8. H. Weller: Colloidal semiconductor Q-particles: chemistry in the transition region between solid and molecular states. Angew. Chem. Int. Ed. Engl. 32, 43 (1993).

    Google Scholar 

  9. H. Tada, M. Fujishima, and H. Kobayashi: Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion. Chem. Soc. Rev. 40, 4232 (2011).

    CAS  Google Scholar 

  10. K. W. Frese and D. G. Canfiled: Adsorption of hydroxide and sulfide ions on single-crystal n-cadmium selenide electrodes. J. Electrochem. Soc. 131, 2614 (1984).

    CAS  Google Scholar 

  11. W. W. Yu, L. Qu, W. Guo, and X. Peng: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854 (2003).

    CAS  Google Scholar 

  12. J. Jasieniak, L. Smith, J. van Embden, and P. Malvaney: Re-examination of the size-dependent absorption of CdSe quantum dots. J. Phys. Chem. C 113, 19468 (2009).

    CAS  Google Scholar 

  13. L. J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda: High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl. Phys. Lett. 91, 023116 (2007).

    Google Scholar 

  14. A. Kubacka, M. Fernandez-Garcia, and G. Colon: Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555 (2012).

    CAS  Google Scholar 

  15. K. Ueno and H. Misawa: Surface plasmon-enhanced photochemical reactions. J. Photochem. Photobiol. C 15, 31 (2013).

    CAS  Google Scholar 

  16. X. Lang, X. Chen, and J. Zhao: Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 43, 473 (2014).

    CAS  Google Scholar 

  17. D. A. Panayotov and J. R. Morris: Surface chemistry of Au/TiO2: thermally and photolytically activated reactions. Surf. Sci. Rep. 71, 77 (2016).

    CAS  Google Scholar 

  18. E. Kowalska, R. Abe, and B. Ohtani: Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis. Chem. Commun. 2009, 241 (2009).

    Google Scholar 

  19. S. Naya, A. Inoue, and H. Tada: Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium(IV) dioxide and surfactant. J. Am. Chem. Soc. 132, 6292 (2010).

    CAS  Google Scholar 

  20. Y. Ide, M. Matsuoka, and M. Ogawa: Efficient visible-light-induced photocatalytic activity on gold-nanoparticle-supported layered titanate. J. Am. Chem. Soc. 132, 16762 (2010).

    CAS  Google Scholar 

  21. Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, and M.-H. Whangbo: Facile in situ synthesis of visible-light plasmonic photocatalysts M-TiO2 (M=Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem. 21, 9079 (2011).

    CAS  Google Scholar 

  22. K. Kimura, S. Naya, Y. Jin-nouchi, and H. Tada: TiO2 crystal form-dependence of the Au/TiO2 plasmon photocatalyst’s activity. J. Phys. Chem. C 116, 7111 (2012).

    CAS  Google Scholar 

  23. D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, and T. Hirai: Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 134, 6309 (2012).

    CAS  Google Scholar 

  24. S. Naya, T. Niwa, T. Kume, and H. Tada: Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. Angew. Chem. Int. Ed. 53, 7305 (2014).

    CAS  Google Scholar 

  25. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111 (2011).

    CAS  Google Scholar 

  26. E. Thimsen, F. L. Formal, M. Grätzel, and S. C. Warren: Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting. Nano Lett. 11, 35 (2011).

    CAS  Google Scholar 

  27. Y. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa: Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy. Angew. Chem. Int. Ed. 53, 10350 (2014).

    CAS  Google Scholar 

  28. D. Meissner, R. Memming, B. Kastening, and D. Bahnemann: Fundamental problems of water splitting as cadmium sulfide. Chem. Phys. Lett. 127, 419 (1986).

    CAS  Google Scholar 

  29. Y. Tachibana, H. Y. Akiyama, Y. Ohtsuka, T. Torimoto, and S. Kuwabata: CdS quantum dots sensitized TiO2 sandwich type photoelectrochemical solar cells. Chem. Lett. 36, 88 (2007).

    CAS  Google Scholar 

  30. S. Licht: Aqueous solubilities products and standard oxidation-reduction potentials of the metal sulfides. J. Electrochem. Soc. 135, 2971 (1988).

    CAS  Google Scholar 

  31. N. Bühler, K. Meier, and J.-F. Beber: Photochemical hydrogen production with cadmium sulfide suspensions. J. Phys. Chem. 88, 3261 (1984).

    Google Scholar 

  32. V. Gonzalez-Pedro, I. Zarazua, E. M. Barea, F. Fabregat-Santiago, E. de la Rosa, I. Mora-Sero, and S. Gimenez: Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based “quasi-artificial leaf”. J. Phys. Chem. C 118, 891 (2014).

    CAS  Google Scholar 

  33. Y. Jin-nouchi, S. Naya, and H. Tada: Quantum dot-sensitized solar cell using a photoanode prepared by in situ photodeposition of CdS on nanocrystalline TiO2 films. J. Phys. Chem. C 114, 16837 (2010).

    CAS  Google Scholar 

  34. I. Mora-Seró, S. Giménez, F. Fabregat-Santiago, R. Gómez, Q. Shen, T. Toyoda, and J. Bisquert: Recombination in quantum dot sensitized solar cells. Acc. Chem. Res. 42, 1848 (2009).

    Google Scholar 

  35. N. Serpone, E. Bergarello, and M. Grätzel: Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions. J. Chem. Soc. Chem. Commun. 1984, 342 (1984).

    Google Scholar 

  36. D. R. Lide, ed.: Handbook of Chemistry and Physics, 83rd edn. CRC Press, New York, 2002.

    Google Scholar 

  37. M. Yoshii, H. Kobayashi, and H. Tada: Sub-bandgap excitation-induced electron injection from CdSe quantum dots to TiO2 in the directly coupled system. ChemPhysChem 16, 1846 (2015).

    CAS  Google Scholar 

  38. M. Fujishima, Y. Nakabayashi, K. Takayama, H. Kobayashi, and H. Tada: High coverage formation of CdS quantum dots on TiO2 by the photocatalytic growth of preformed seeds. J. Phys. Chem. C 120, 17365 (2016).

    CAS  Google Scholar 

  39. Y.-L. Lee, C.-F. Chi, and S.-Y. Liau: CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chem. Mater. 22, 922 (2010).

    CAS  Google Scholar 

  40. M. Seol, H. Kim, W. Kim, and K. Yong: Highly efficient photoelectrochemical hydrogen generation using a ZnO nanowire array and a CdSe/CdS co-sensitizer. Electrochem. Commun. 12, 1416 (2010).

    CAS  Google Scholar 

  41. H. Kim and K. Yong: Highly efficient photoelectrochemical hydrogen generation using a quantum dot coupled hierarchical ZnO nanowires array. ACS Appl. Mater. Interfaces 5, 13258 (2013).

    CAS  Google Scholar 

  42. G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li: Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 10, 1088 (2010).

    CAS  Google Scholar 

  43. R. Trevisan, P. Rodenas, V. Gonzalez-Pedro, C. Sima, R. S. Sanchez, E. M. Barea, I. Mora-Sero, F. Fabregat-Santiago, and S. Gimenez: Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based “quasi-artificial leaf”. J. Phys. Chem. Lett. 4, 141 (2013).

    CAS  Google Scholar 

  44. G. Hodes: Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. Phys. Chem. Chem. Phys. 9, 2181 (2007).

    CAS  Google Scholar 

  45. J. Albero, J. N. Clifford, and E. Palomares: Quantum dot based molecular solar cells. Coord. Chem. Rev. 263-264, 53 (2014).

    Google Scholar 

  46. L. Jin, B. AlOtaibi, D. Benetti, S. Li, H. Zhao, Z. Mi, A. Vomiero, and F. Rosei: Near-infrared colloidal quantum dots for efficient and durable photoelectrochemical solar-driven hydrogen production. Adv. Sci. 3, 1500345 (2016).

    Google Scholar 

  47. Q. Qiu, P. Wang, L. Xu, D. Wang, Y. Lin, and T. Xie: Photoelectrical properties of CdS/CdSe core/shell QDs modified anatase TiO2 nanowires and their application for solar cells. Phys. Chem. Chem. Phys. 19, 15724 (2017).

    CAS  Google Scholar 

  48. A. V. Kozytskiy, A. L. Stroyuk, S. Y. Kuchmy, E. A. Streltsov, N. A. Skorik, and V. O. Mskalyuk: Effect of the method of preparation of ZnO/CdS and TiO2/CdS film nanoheterostructures on their photoelectrochemical properties. Theor. Exp. Chem. 49, 165 (2013).

    CAS  Google Scholar 

  49. X. Ding, Y. Li, J. Zhao, Y. Zhu, Y. Li, W. Deng, and C. Wang: Enhanced photocatalytic H2 evolution over CdS/Au/g-C3N4 composite photocatalyts under visible-light irradiation. APL Mater. 3, 104410 (2015).

    Google Scholar 

  50. K. Kitazono, R. Akashi, K. Fujiwara, A. Akita, S. Naya, M. Fujishima, and H. Tada: Photocatalytic synthesis of CdS(core)-CdSe(shell) quantum dots with a heteroepitaxial junction on TiO2: photoelectrochemical hydrogen generation from water. ChemPhysChem 18, 2840 (2017).

    CAS  Google Scholar 

  51. M. Fujii, K. Nagasuna, M. Fujishima, T. Akita, and H. Tada: Photodeposition of CdS quantum dots on TiO2: preparation, characterization, and reaction mechanism. J. Phys. Chem. C 113, 16711 (2009).

    CAS  Google Scholar 

  52. M. Fujishima, K. Tanaka, N. Sakami, M. Wada, K. Morii, T. Hattori, Y. Sumida, and H. Tada: Photocatalytic current doubling-induced generation of uniform selenium and cadmium selenide quantum dots on titanium(IV) oxide. J. Phys. Chem. C 118, 8917 (2014).

    CAS  Google Scholar 

  53. S. Tsubota, M. Haruta, T. Kobayashi, A. Ueda, and Y. Nakahara: Preparation of highly dispersed gold on titanium and magnesium oxide. In Preparation of Catalysts V, G. Poncelet, P. A. Jacobs, P. Grange and B. Delmon, eds.; Elsevier: Amsterdam, 1991, pp. 695–704.

    Google Scholar 

  54. H. Tada, T. Kiyonaga, and S. Naya: Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem. Soc. Rev. 38, 1849 (2009).

    CAS  Google Scholar 

  55. H. Tada, F. Suzuki, S. Ito, T. Kawahara, T. Akita, K. Tanaka, and H. Kobayashi: Au-core/Pt-shell bimetallic cluster-loaded TiO2. 1. Adsorption of organic compound. J. Phys. Chem. B 106, 8714 (2002).

    CAS  Google Scholar 

  56. R. Negishi, S. Naya, H. Kobayashi, and H. Tada: Gold(core)-lead(shell) nanoparticle-loaded titanium(IV) oxide prepared by underpotential photodeposition: plasmonic water oxidation. Angew. Chem. Int. Ed. 56, 10347 (2017).

    CAS  Google Scholar 

  57. P. Mulvaney, M. Giersig, and A. Henglein: Surface chemistry of colloidal gold: deposition of lead and accompanying optical effects. J. Phys. Chem. 96, 10419 (1992).

    CAS  Google Scholar 

  58. M. Grätzel: Photoelectrochemical cells. Nature 414, 338 (2001).

    Google Scholar 

  59. Y. Tachibana, K. Umekita, Y. Otsuka, and S. Kuwabata: Performance improvement of CdSe quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer. J. Phys. D 41, 102002 (2008).

    Google Scholar 

  60. L. Brus: Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555 (1986).

    CAS  Google Scholar 

  61. S. Naya, T. Kume, R. Akashi, M. Fujishima, and H. Tada: Red-light-driven water splitting by Au(core)-CdS(shell) half-cut nanoegg with heteroepitaxial junction. J. Am. Chem. Soc. 140, 1251 (2018).

    CAS  Google Scholar 

  62. Y. Tian and T. Tatsuma: Mechanism and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632 (2005).

    CAS  Google Scholar 

  63. L. Du, A. Furube, K. Yamamoto, K. Hara, R. Katoh, and M. Tachiya: Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size. J. Phys. Chem. C 113, 6454 (2009).

    CAS  Google Scholar 

  64. A. Zaban, M. Greenshtein, and J. Bisquert: Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4, 859 (2003).

    CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges Prof. Hisayoshi Kobayashi (Kyoto Institute of Technology) for DFT calculations, and Dr. Musashi Fujishima, Dr. Shin-ichi Naya, Takuya Ikeda, Ryo Akashi, and Kaoru Kitazono (Kindai University) for experimental supports and helpful discussion. This work was partially supported by a Grant-in-Aid for Scientific Research (C) No. 15K05654, and MEXT-Supported Program for the Strategic Research Foundation at Private Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Tada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tada, H. Nanohybrid-sensitized photoelectrochemical cells for solar-to-hydrogen conversion. MRS Communications 8, 754–764 (2018). https://doi.org/10.1557/mrc.2018.137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.137

Navigation