Skip to main content
Log in

Fabrication of chemical sensor for organochlorine pesticide detection using colloidal gold nanoparticles

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Gold nanoparticles (GNPs) of ~8 nm in diameter were used for the detection of organochlorine endosulfan pesticide (ESP) as colorimetric sensor and the design of GNP-based chemical sensor for its quantitative estimation has also been proposed. The original wine red color of GNPs changes into various shades of blue after the addition of different concentrations of ESP solutions. A GNP-based sensing electrode has been used for designing of ESP detection chemical sensor at ambient temperature. The response and sensitivity of ESP sensor parameters are obtained from their recovery curves of the change in resistance versus time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Table I.

Similar content being viewed by others

References

  1. K.E. Drexler: Engines of Creation: The Coming Era of Nanotechnology (Anchor Books, New York, 1986).

    Google Scholar 

  2. K. E. Drexler: Nanosystems: Molecular Machinery, Manufacturing, and Computation (John Wiley & Sons, New York, 1992).

    Google Scholar 

  3. R. Saini, S. Saini, and S. Sharma: Nanotechnology: the future medicine. J. Cutan. Aesthet. Surg. 3, 32 (2010).

    Article  Google Scholar 

  4. F. Allhoff, P. Lin, and D. Moore: What is Nanotechnology and Why Does it Matter?: From Science to Ethics (John Wiley and Sons, Oxford, 2010), pp. 3–5.

    Book  Google Scholar 

  5. S.K. Prasad: Modern Concepts in Nanotechnology (Discovery Publishing House, Delhi, 2008) pp. 31–32.

    Google Scholar 

  6. F.K. Nafiseh and M.R.H. Nezhad: Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides. Anal. Chem. 88, 8099 (2016).

    Article  Google Scholar 

  7. S. Krishnendu, S.A. Sarit, K. Chaekyu, L. Xiaoning, and M.R. Vincent: Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739 (2012).

    Article  Google Scholar 

  8. J.K. Suriyapha, P. Khwankhao, B. Natvara, and T. Siriwan: Gold nanoparticles-based colorimetric sensor for cysteine detection. Energy Procedia 56, 10 (2014).

    Article  Google Scholar 

  9. M. Stefania, S. Giovanna, B. Fabio, P.R. Pier, and F.G. Gian: Advances of nanotechnology in agro-environmental studies. Ital. J. Agron. 8, 127 (2013).

    Google Scholar 

  10. K. Youngjin, C.J. Robert, and T.H. Joseph: Gold nanoparticle-based sensing of “spectroscopically silent”. Heavy metal ions. Nano Lett. 1, 165 (2001).

    Article  Google Scholar 

  11. E. Acosta: Bioavailability of NPs in nutrient and nutraceutical delivery. Curr. Opin. Colloid Interface Sci. 14, 3 (2009).

    Article  CAS  Google Scholar 

  12. T. Balaji, S.A. El-Safty, H. Matsunaga, T. Hanaoka, and F. Mizukami: Optical Sensors based on nanostructured cage materials for the detection of toxic metal ions. Angew. Chem. 45, 7202 (2006).

    Article  CAS  Google Scholar 

  13. S. Baruah and J. Dutta: Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ. Chem. Lett. 7, 191 (2009).

    Article  CAS  Google Scholar 

  14. T. Ben-Moshe: Transport of metal oxide nanoparticles in saturated porous media. Chemosphere. 81, 387 (2010).

    Article  CAS  Google Scholar 

  15. A.S. Nair, T.T. Renjis, and T. Pradeep: Detection and extraction of endosulfan by metal nanoparticles. J. Environ. Monit. 5, 363 (2003).

    Article  Google Scholar 

  16. K.L. Dreher: Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol. Sci. 77, 3 (2004).

    Article  CAS  Google Scholar 

  17. A.S. Nair and T. Pradeep: Halocarbon mineralization and catalytic destruction by metal nanoparticles. Curr. Sci. 84, 1560 (2003).

    CAS  Google Scholar 

  18. X. Tian, K. Michael, B. Jonathan, H. Matt, S. Joan, O. Terry, S. Constantinos, I.Y. Joanne, R.W. Mark, and E.N. Andre: Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794 (2006).

    Article  Google Scholar 

  19. M.S. Bootharaju and T. Pradeep: Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles. Langmuir 28, 2671 (2012).

    Article  CAS  Google Scholar 

  20. Z. Weng, H. Wang, J. Vongsvivut, R. Li, A.M. Glushenkov, J. He, Y. Chen, C.J. Barrow, and W. Yang: Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions. Anal. Chim. Acta. 803, 128 (2013).

    Article  CAS  Google Scholar 

  21. N.L. Rosi and C.A. Mirkin: Nanostructures in biodiagnostics. Chem. Rev. 105, 1547 (2005).

    Article  CAS  Google Scholar 

  22. A. Husen: Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J. Trace Elem. Med. Biol. 40, 10 (2017).

    Article  Google Scholar 

  23. L. Dykman, and N. Khlebtsov: Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41, 2256 (2012).

    Article  CAS  Google Scholar 

  24. W. Cai, T. Gao, H. Hong, and J. Sun: Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol., Sci. Appl. 10, 17 (2008).

    Article  Google Scholar 

  25. E. Robert, J.S. James, C.M. Robert, L.L. Robert, and A.M. Chad: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078 (1997).

    Article  Google Scholar 

  26. P. Goel, M. Arora, and A.M. Biradar: Mechanism of photoluminescence enhancement and quenching in Nd2O3 nanoparticles–ferroelectric liquid crystal nanocomposites. RSC Adv. 5, 14974 (2015).

    Article  CAS  Google Scholar 

  27. J.V. Anguita, S.R.P. Silva, A.P. Burden, B.J. Sealy, S. Haq, M. Hebbron, I. Sturland, and A. Pritchard: Thermal stability of plasma deposited thin films of hydrogenated carbon–nitrogen alloys. J. App. Phys. 86, 6276 (1999).

    Article  CAS  Google Scholar 

  28. B. Dischler, A. Bubenzer, and P. Koidl: Bonding in hydrogenated hard carbon studied by optical spectroscopy. Solid State Commun. 48, 105 (1983).

    Article  CAS  Google Scholar 

  29. Z. Li, Z. Yang, and R. Xiao: Visible photoluminescence from hydrogenated amorphous carbon films prepared by pulsed laser ablation of polymethyl methacrylate (PMMA). Appl. Phys. A: Mater. Sci. Process. 63, 243 (1996).

    Article  Google Scholar 

  30. R. Stief, J. Schafer, J. Ristein, L. Ley, and W. Beyer: Hydrogen bonding analysis in amorphous hydrogenated carbon by a combination of infrared absorption and thermal effusion experiments. J. Non-Cryst. Solids 198, 636 (1996).

    Article  Google Scholar 

  31. D. H. Kang, S.C. Ha, K.B. Kim, and S.K. Min: Evaluation of the ion bombardment energy for growing diamondlike carbon films in an electron cyclotron resonance plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol., A 16, 2625 (1998).

    Article  CAS  Google Scholar 

  32. A. Oxtoby, and N. Nachtrieb: Principles of Modern Chemistry (CBS College Publishing, Philadelphia, 1986).

    Google Scholar 

  33. Y. Daskal, R. Dittrich, J. Walter, and Y. Joseph: Chemiresistor sensors based on gold nanoparticle composites. Procedia Eng. 120, 799 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank V.C., G.B.P.U.A.T. for continuous encouragement and interest in this work. One of the authors (P. Goel) is also thankful to DST, New Delhi for financial support under INSPIRE Faculty Scheme (IFA12-PH-38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puja Goel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, P., Arora, M. Fabrication of chemical sensor for organochlorine pesticide detection using colloidal gold nanoparticles. MRS Communications 8, 1000–1007 (2018). https://doi.org/10.1557/mrc.2018.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.125

Navigation