Skip to main content
Log in

Thermal and mechanical issues of high-power laser diode degradation

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A computational model for the evaluation of the thermomechanical effects that give rise to the catastrophic optical damage of laser diodes has been devised. The model traces the progressive deterioration of the device running in continuous wave conditions. The local heating of the active layer locally leads to the onset of the plastic regime. As a result, dislocations and threads of dislocations grow across the active layers and lead to rapidly growing temperatures in the quantum well. The poor power dissipation under these conditions has been identified as the key factor driving the final degradation of the laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. O. Ueda: On degradation studies of III-V compound semiconductor optical devices over three decades: focusing on gradual degradation. Jpn. J. Appl. Phys. 49, 090001 (2010).

    Article  Google Scholar 

  2. M.A. Bettiati: High optical strength GaAs-based laser structures. Microelectron. Reliab. 53, 1496 (2013).

    Article  CAS  Google Scholar 

  3. W.C. Tang, H.J. Rosen, P. Vettiger, and D.J. Webb: Raman microprobe study of the time development of AlGaAs single quantum well laser facet temperature on route to catastrophic breakdown. Appl. Phys. Lett. 58, 557 (1991).

    Article  CAS  Google Scholar 

  4. J.W. Tomm, M. Ziegler, M. Oudart, J. Nagle, and J. Jiménez: Gradual degradation of GaAs-based quantum well lasers, creation of defects, and generation of compressive strain. Phys. Status Solidi Appl. Mater. Sci. 206, 1912 (2009).

    Article  CAS  Google Scholar 

  5. J. Souto, J.L. Pura, and J. Jiménez: About the physical meaning of the critical temperature for catastrophic optical damage in high power quantum well laser diodes. Laser Phys. Lett. 13, 025005 (2016).

    Article  Google Scholar 

  6. W. Nakwaski: Thermal analysis of the catastrophic mirror damage in laser diodes. J. Appl. Phys. 57, 2424 (1985).

    Article  CAS  Google Scholar 

  7. G. Chen and C.L. Tien: Facet heating of quantum well lasers. J. Appl. Phys. 74, 2167 (1993).

    Article  CAS  Google Scholar 

  8. U. Menzel: Self-consistent calculation of facet heating in asymmetrically coated edge emitting diode lasers. Semicond. Sci. Technol. 13, 265 (1998).

    Article  CAS  Google Scholar 

  9. W.R. Smith: Mathematical modelling of thermal runaway in semiconductor laser operation. J. Appl. Phys. 87, 8276 (2003).

    Article  Google Scholar 

  10. J. Souto, J.L. Pura, and J. Jiménez: Nanoscale effects on the thermal and mechanical properties of AlGaAs/GaAs quantum well laser diodes: influence on the catastrophic optical damage (COD). J. Phys. D Appl. Phys. 50, 235101 (2017).

    Article  Google Scholar 

  11. G. Chen and C.L. Tien: Thermal conductivities of quantum well structures. J. Thermophys. Heat Transf. 7, 311 (1993).

    Article  CAS  Google Scholar 

  12. L.H. Liang and B. Li: Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys. Rev. B Condens. Matter Mater. Phys. 73, 1 (2006).

    Google Scholar 

  13. E. Gȩsikowska and W. Nakwaski: An impact of multi-layered structures of modern optoelectronic devices on their thermal properties. Opt. Quantum Electron. 40, 205 (2008).

    Article  Google Scholar 

  14. W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, and D. Katzer: Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 59, 8105 (1999).

    Article  CAS  Google Scholar 

  15. H. Tan, K.K. Kamath, Z. Mi, P. Bhattacharya, and D. Klotzkin: Analysis of the reduced thermal conductivity in InGaAs/GaAs quantum dot lasers from chirp characteristics. Appl. Phys. Lett. 89, 1 (2006).

    Google Scholar 

  16. M.N. Luckyanova, J.A. Johnson, A.A. Maznev, J. Garg, A. Jandl, M.T. Bulsara, E.A. Fitzgerald, K.A. Nelson, and G. Chen: Anisotropy of the thermal conductivity in GaAs/AlAs superlattices anisotropy of the thermal conductivity in GaAs/AlAs superlattices. Nano Lett. 13, 3973 (2013).

    Article  CAS  Google Scholar 

  17. J. Piprek, J. Kolodzey, and C.S. Ih: Thermal conductivity reduction in GaAs–AlAs distributed Bragg reflectors. IEEE Photonics Technol. Lett. 10, 81 (1998).

    Article  Google Scholar 

  18. A. Martín-Martín, M. Avella, M.P. Iñiguez, J. Jiménez, M. Oudart, and J. Nagle: Thermomechanical model for the plastic deformation in high power laser diodes during operation. J. Appl. Phys. 106, 073105 (2009).

    Article  Google Scholar 

  19. N.J. Petch: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  20. Y. Sin, N. Presser, M. Brodie, Z. Lingley, B. Foran, and S.C. Moss: Degradation mechanisms in high-power multi-mode InGaAs-AlGaAs strained quantum well lasers for high-reliability applications. Proc. SPIE 9348, 93480L–1 (2015).

    Article  Google Scholar 

  21. P.G. Eliseev, A.G. Glebov, and M. Osiński: Current self-distribution effect in diode lasers: analytic criterion and numerical study. IEEE J. Sel. Top. Quantum Electron. 3, 499 (1997).

    Article  CAS  Google Scholar 

  22. S. Adachi: Optical properties of GaAs partially amorphized by ion implantation: effective- medium-approximation analysis. J. Appl. Phys. 69, 7768 (1991).

    Article  CAS  Google Scholar 

  23. P.E. Hopkins and J.C. Duda: Introduction to nanoscale thermal conduction. Heat Transf. Math. Model. Numer. Methods Inf. Technol. 112, 872 (2006).

    Google Scholar 

  24. L. Sugiura: Comparison of degradation caused by dislocation motion in compound semiconductor light-emitting devices. Appl. Phys. Lett. 70, 1317 (1997).

    Article  CAS  Google Scholar 

  25. G. Chen, M. Neagu, and T. Borca-Tasciuc: Thermal conductivity and heat transfer in superlattices. MRS Proc. 478, 12 (1997).

    Article  Google Scholar 

  26. C. Mion, J.F. Muth, E.A. Preble, and D. Hanser: Accurate dependence of gallium nitride thermal conductivity on dislocation density. Appl. Phys. Lett. 89, 092123 (2006).

    Article  Google Scholar 

  27. Y. Sin, N. Presser, Z. Lingley, M. Brodie, B. Foran, and S.C. Moss: Reliability, failure modes, and degradation mechanisms in high power single- and multi-mode InGaAs-AlGaAs strained quantum well lasers. Proc. SPIE 9733, 973304–1 (2016).

    Article  Google Scholar 

  28. B. Monemar, K.K. Shih, and G.D. Pettit: Some optical properties of the AlxGa1-xAs alloys system. J. Appl. Phys. 47, 2604 (1976).

    Article  CAS  Google Scholar 

  29. J.W. Tomm, M. Ziegler, M. Hempel, and T. Elsaesser: Mechanisms and fast kinetics of the catastrophic optical damage (COD) in GaAs-based diode lasers. Laser Photon. Rev. 5, 422 (2011).

    Article  CAS  Google Scholar 

  30. R. Schatz and C.G. Bethea: Steady state model for facet heating leading to thermal runaway in semiconductor lasers. J. Appl. Phys. 76, 2509 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work has been funded by the Spanish Government (ENE2014-56069-C4-4-R) and Junta de Castilla y León (VA29U13 and VA081U16). J.L. Pura wishes to acknowledge a grant by the FPU program of the Spanish Government (FPU14/00916).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Souto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souto, J., Pura, J.L. & Jiménez, J. Thermal and mechanical issues of high-power laser diode degradation. MRS Communications 8, 995–999 (2018). https://doi.org/10.1557/mrc.2018.124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.124

Navigation