Skip to main content
Log in

Magnetocaloric properties and magnetic cooling performance of low-cost Fe75−xCrxAl25 alloys

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Low-cost, earth-abundant magnetocaloric materials (MCMs) are required for energy-efficient, green, and affordable magnetic cooling technology. We investigated the magnetic and magnetocaloric properties of rare-earth-free Fe75-xCrxAl25 (19≤x≤25) arc-melted alloys. The Curie temperature (Tc) of these alloys could be tuned from 220 K up to room temperature by Cr additions. The relative cooling power/US$ was found to be superior to other promising MCMs. Fe50Cr25Al25 ball-milled powders, with an average particle size of ~25 nm, were used to prepare magnetic fluid. Maximum cooling (ΔT) of 5.4°C was observed for Fe50Cr25Al25-based fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. K.A. Gschneidner Jr. and V.K. Pecharsky: Magnetocaloric materials. Annu. Rev. Mater. Sci. 30, 387 (2000).

    Article  CAS  Google Scholar 

  2. V. Holzhäuser: Premiere of cutting-edge cooling appliance (BASF New Business GmbH, Las Vegas, 2015). Available at: https://www.basf.com/en/company/news-and-media/news-releases/2015/01/p-15-100.html.

    Google Scholar 

  3. A.M. Tishin and Y.I. Spichkin: The Magnetocaloric Effect and its Applications (CRC Press, Florida, 2003).

    Book  Google Scholar 

  4. S. Ma, Q. Ge, X. Han, K. Liu, C. Chen, K. Yu, S. Yang, Y. Song, Z. Zhang, and Z. Zhong: Magnetostructural transformation and magnetocaloric effect in rod-shaped Mn-Ni-Fe-Ge compounds by spraying casting. J. Alloys Compd. 742, 648 (2018).

    Article  CAS  Google Scholar 

  5. J.Y. Law, R.V. Ramanujan, and V. Franco: Tunable Curie temperatures in Gd alloyed Fe–B–Cr magnetocaloric materials. J. Alloys Compd. 508, 14 (2010).

    Article  CAS  Google Scholar 

  6. D.V.M. Repaka, V. Sharma, and R.V. Ramanujan: Near room temperature magnetocaloric properties and critical behavior of binary FexCu100−x nanoparticles. J. Alloys Compd. 690, 575 (2017).

    Article  CAS  Google Scholar 

  7. V. Chaudhary and R.V. Ramanujan: Magnetic and structural properties of high relative cooling power (Fe70Ni30)92Mn8 magnetocaloric nanoparticles. J. Phys. D 48, 305003 (7pp) (2015).

    Article  Google Scholar 

  8. V. Sharma, D.V.M. Repaka, V. Chaudhary, and R.V. Ramanujan: Enhanced magnetocaloric properties and critical behavior of (Fe0.72Cr0.28)3Al alloys for near room temperature cooling. J. Phys. D 50, 145001(11pp) (2017).

    Article  Google Scholar 

  9. S-H. Kim, H. Kim, and N.J. Kim: Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518, 77 (2015).

    Article  CAS  Google Scholar 

  10. L.J. Love, J.F. Jansen, T.E. McKnight, Y. Roh, and T.J. Phelps: A magnetocaloric pump for microfluidic applications. IEEE Trans. Nanobiosci. 3, 101 (2004).

    Article  Google Scholar 

  11. A. Joseph and S. Mathew: Ferrofluids: synthetic strategies, stabilization, physicochemical features, characterization, and applications. ChemPlusChem 79, 1382 (2014).

    Article  CAS  Google Scholar 

  12. C. Scherer and A.M. Figueiredo Neto: Ferrofluids: properties and applications. Braz. J. Phys. 35, 718 (2005).

    Article  CAS  Google Scholar 

  13. M. Bahiraei and M. Hangi: Automatic cooling by means of thermomagnetic phenomenon of magnetic nanofluid in a toroidal loop. Appl. Therm. Eng. 107, 700 (2016).

    Article  CAS  Google Scholar 

  14. J. Gomes, G. Azevedo, J. Depeyrot, J. Mestnik-Filho, G. Da Silva, F. Tourinho, and R. Perzynski: ZnFe2O4 nanoparticles for ferrofluids: a combined XANES and XRD study. J. Magn. Magn. Mater. 323, 1203 (2011).

    Article  CAS  Google Scholar 

  15. T. Wang, X. Bian, C. Yang, S. Zhao, and M. Yu: Ferrofluids based on Co-Fe-Si-B amorphous nanoparticles. Appl. Surf. Sci. 399, 663 (2017).

    Article  CAS  Google Scholar 

  16. V. Chakka, B. Altuncevahir, Z. Jin, Y. Li, and J. Liu: Magnetic nanoparticles produced by surfactant-assisted ball milling. J. Appl. Phys. 99, 08E912 (2006).

    Article  Google Scholar 

  17. S. Pal, A. Datta, S. Sen, A. Mukhopdhyay, K. Bandopadhyay, and R. Ganguly: Characterization of a ferrofluid-based thermomagnetic pump for microfluidic applications. J. Magn. Magn. Mater. 323, 2701 (2011).

    Article  CAS  Google Scholar 

  18. Comsol Multiphysics: version 5.2. COMSOL AB, Stockholm, Sweden (2015). Available at: http://www.comsol.com.

  19. V. Chaudhary, Z. Wang, A. Ray, I. Sridhar, and R.V. Ramanujan: Self pumping magnetic cooling. J. Phys. D 50, 03LT03 (pp 8) (2016).

    Article  Google Scholar 

  20. V. Sebastian, N. Lakshmi, and K. Venugopalan: Comparative study of the structural and magnetic properties of bulk and nanostructured Fe2CrAl. Hyperfine Interact. 183, 61 (2008).

    Article  CAS  Google Scholar 

  21. C. Paduani, W.E. Pöttker, J.D. Ardisson, J. Schaf, A.Y. Takeuchi, M.I. Yoshida, S. Soriano, and M. Kalisz: Mössbauer effect and magnetization studies of the Fe2+xCr1−xAl system in the L21 (X2YZ) structure. J. Phys. Condens. Matter 19, 156204 (pp 9) (2007).

    Article  Google Scholar 

  22. M.E. McHenry, M.A. Willard, and D.E. Laughlin: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291 (1999).

    Article  CAS  Google Scholar 

  23. V. Chaudhary and R.V. Ramanujan: Magnetocaloric properties of Fe-Ni-Cr nanoparticles for active cooling. Sci. Rep. 6, 9 (2016).

    Article  Google Scholar 

  24. J.Y. Law, V. Franco, and R.V. Ramanujan: Influence of La and Ce additions on the magnetocaloric effect of Fe–B–Cr-based amorphous alloys. Appl. Phys. Lett. 98, 192503 (2011).

    Article  Google Scholar 

  25. D.D. Belyea, M. Lucas, E. Michel, J. Horwath, and C.W. Miller: Tunable magnetocaloric effect in transition metal alloys. Sci. Rep. 5, 15755 (pp 8) (2015).

    Article  CAS  Google Scholar 

  26. D. Wang, L. Ma, Y.B. Guo, and X. Zhou: Tunable Curie temperature around room temperature and wide temperature span of magnetic entropy change in (Fe1−xMnx)2Y compounds. Mater. Res. Express 4, 126106 (pp 7) (2017).

    Article  Google Scholar 

  27. M. Bourouina, A. Krichene, N.C. Boudjada, and W. Boujelben: Structural disorder effect on the structural and magnetic properties of Pr0.4Re0.1Sr0.5− yBayMnO3 manganites (Re = Pr, Sm, Eu, Gd, Dy and Ho). Ceram. Int. 43, 12311 (2017).

    Article  CAS  Google Scholar 

  28. S.L. Russek and C.B. Zimm: Potential for cost effective magnetocaloric air conditioning systems. Int. J. Refrig. 29, 1366 (2006).

    Article  Google Scholar 

  29. Z.B. Li, X. F. Zhang, Y.F. Li, Q. Zhao, T.Y. Zhao, and B.G. Shen: Tunable Curie temperature around room temperature and magnetocaloric effect in ternary Ce–Fe–B amorphous ribbons. J. Phys. D 50, 015002 (2016).

    Article  Google Scholar 

  30. Z. Laherisheth, K. Parekh, and R. Upadhyay: Role of inter-particle force between micro and nano magnetic particles on the stability of magnetorheological fluid. AIP Adv. 7, 025206 (2017).

    Article  Google Scholar 

  31. M. Goharkhah and M. Ashjaee: Effect of an alternating nonuniform magnetic field on ferrofluid flow and heat transfer in a channel. J. Magn. Magn. Mater. 362, 80 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research is supported by grants from the National Research Foundation, Prime Minister’sOffice, Singapore under its Campus of Research Excellence and Technological Enterprise (CREATE) programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Ramanujan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Pattanaik, S., Parmar, H. et al. Magnetocaloric properties and magnetic cooling performance of low-cost Fe75−xCrxAl25 alloys. MRS Communications 8, 988–994 (2018). https://doi.org/10.1557/mrc.2018.122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.122

Navigation