Skip to main content
Log in

Carrier-induced absorption as a mechanism for electrochromism in tungsten trioxide

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We present a first-principles investigation on the optical absorption of tungsten trioxide, an electrochromic material. Using state-of-the-art techniques, the absorption spectra are calculated for the cubic, monoclinic, and amorphous phases. For both crystalline and disordered structures, doping induces strong absorption in the infrared. Absorption in the visible range increases with the degree of structural distortion; the absorption coefficient in the blue exceeds 103 cm−1 at doping levels above 1020 cm−3 in the monoclinic phase. Increased disorder in disordered structures significantly enhances the visible-range absorption. We identify the microscopic mechanism as optical absorption originating at conduction-band-derived states that are filled by doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. R.J. Mortimer: Electrochromic materials. Annu. Rev. Mater. Res. 41, 241 (2011).

    Article  CAS  Google Scholar 

  2. C.J.W. Ng: Synthesis of Tungsten Oxide for Solar Energy Conversion and Water Splitting Applications. Ph.D. Thesis, The University of New South Wales, 2012.

    Google Scholar 

  3. B. Ingham, S. Hendy, S. Chong, and J. Tallon: Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems. Phys. Rev. B 72, 075109 (2005).

    Article  Google Scholar 

  4. Y. Xue, Y. Zhang and P. Zhang: Theory of the color change of NaxWO3 as a function of Na-charge doping. Phys. Rev. B 79, 205113 (2009).

    Article  Google Scholar 

  5. F. Wang, C. Di Valentin, and G. Pacchioni: Semiconductor-to-metal transition in WO3−x: nature of the oxygen vacancy. Phys. Rev. B 84, 073103 (2011).

    Article  Google Scholar 

  6. O.F. Schirmer, V. Wittwer, G. Baur, and G. Brandt: Dependence of WO3 electrochromic absorption on crystallinity. J. Electrochem. Soc. Solid-State Sci. Technol. 124, 749 (1977).

    CAS  Google Scholar 

  7. C.G. Granqvist: Electrochromic tungsten oxide films: review of progress 1993-1998. Sol. Energy Mater. Sol. Cells 60, 201 (2000).

    Article  CAS  Google Scholar 

  8. R.B. Goldner, P. Norton, K. Wong, G. Foley, E.L. Goldner, G. Seward, and R. Chapman: Further evidence for free electrons as dominating the behavior of electrochromic polycrystalline WO3 films. Appl. Phys. Lett. 47, 536 (1985).

    Article  CAS  Google Scholar 

  9. D.H. Mendelsohn and R.B. Goldner: Ellipsometry measurements as direct evidence of the Drude model for polycrystalline electrochromic WO3 films. J. Electrochem. Soc. 131, 857 (1984).

    Article  CAS  Google Scholar 

  10. A. Deneuville and P. Gerard: Influence of substoichiometry, hydrogen content and crystallinity on the optical and electrical properties of HxWOy thin films. J. Electron. Mater. 7, 559 (1978).

    Article  CAS  Google Scholar 

  11. L. Berggren, J. Ederth, and G.A. Niklasson: Electrical conductivity as a function of temperature in amorphous lithium tungsten oxide. Sol. Energy Mater. Sol. Cells 84, 329 (2004).

    Article  CAS  Google Scholar 

  12. R.B. Goldner, D.H. Mendelsohn, J. Alexander, W.R. Henderson, D. Fitzpatrick, T.E. Haas, H.H. Sample, R.D. Rauh, M.A. Parker, and T.L. Rose: High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films. Appl. Phys. Lett. 43, 1093 (1983).

    Article  CAS  Google Scholar 

  13. J.M. Berak and M.J. Sienko: Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. J. Solid State Chem. 2, 109 (1970).

    Article  CAS  Google Scholar 

  14. W. Wang, A. Janotti, and C.G. Van de Walle: Role of oxygen vacancies in crystalline WO3. J. Mater. Chem. C 4, 6641 (2016).

    Article  CAS  Google Scholar 

  15. Y. Ping, D. Rocca, and G. Galli: Optical properties of tungsten trioxide from first-principles calculations. Phys. Rev. B 87, 165203 (2013).

    Article  Google Scholar 

  16. H. Peelaers, E. Kioupakis, and C.G. Van de Walle: Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2. Appl. Phys. Lett. 100, 011914 (2012).

    Article  Google Scholar 

  17. H. Peelaers and C.G. Van de Walle: Sub-band-gap absorption in Ga2O3. Appl. Phys. Lett. 111, 182104 (2017).

    Article  Google Scholar 

  18. H. Peelaers, D. Steiauf, J.B. Varley, A. Janotti, and C.G. Van de Walle: (InxGa1−x)2O3 alloys for transparent electronics. Phys. Rev. B 92, 085206 (2015).

    Article  Google Scholar 

  19. J.R. Yates, X. Wang, D. Vanderbilt, and I. Souza: Spectral and Fermi surface properties from Wannier interpolation. Phys. Rev. B 75, 195121 (2007).

    Article  Google Scholar 

  20. N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, and D. Vanderbilt: Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419 (2012).

    Article  CAS  Google Scholar 

  21. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  22. G. Kresse and J. Furthmüller: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  23. J. Heyd, G.E. Scuseria, and M. Ernzerhof: Erratum: hybrid functionals based on a screened Coulomb potential [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124, 219906 (2006).

    Article  Google Scholar 

  24. J. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  25. G.A. de Wijs and R.A. de Groot: Structure and electronic properties of amorphous WO3. Phys. Rev. B 60, 16463 (1999).

    Article  Google Scholar 

  26. W. Wang, A. Janotti, and C.G. Van de Walle: Phase transformations upon doping in WO3. J. Chem. Phys. 146, 214504 (2017).

    Article  Google Scholar 

  27. D. Lynch, R. Rosei, J. Weaver, and C. Olson: The optical properties of some alkali metal tungsten bronzes from 0.1 to 38 eV. J. Solid State Chem. 8, 242 (1973).

    Article  CAS  Google Scholar 

  28. R.-T. Wen, C.G. Granqvist, and G.A. Niklasson: Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 14, 996 (2015).

    Article  CAS  Google Scholar 

  29. S.-H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, and A.C. Dillon: Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 18, 763 (2006).

    Article  CAS  Google Scholar 

  30. N. Bondarenko, O. Eriksson, and N.V. Skorodumova: Polaron mobility in oxygen-deficient and lithium-doped tungsten trioxide. Phys. Rev. B 92, 165119 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank A. Janotti, K. Krishnaswamy, S. J. Allen, and M. McCluskey for fruitful discussions. This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-FG02-07ER46434. W. W. acknowledges this material is based upon the work supported by the National Science Foundation (NSF) Graduate Research Fellowship under Grant No. DGE 1144085. Computational resources were provided by the Center for Scientific Computing at the CNSI and MRL: an NSF MRSEC (DMR-1720256) and NSF CNS-0960316; the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF Grant No. ACI-1548562; and in part by an ONR grant and computer time from the DOD High Performance Computing Modernization Program at the AFRL DSRC and ERDC DSRC under Project No. ONRDC36953418.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wennie Wang.

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2018.115|url|}.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Peelaers, H., Shen, JX. et al. Carrier-induced absorption as a mechanism for electrochromism in tungsten trioxide. MRS Communications 8, 926–931 (2018). https://doi.org/10.1557/mrc.2018.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.115

Navigation