Skip to main content
Log in

Investigation of the redox state of magnetite upon Aβ-fibril formation or proton irradiation; implication of iron redox inactivation and β-amyloidolysis

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In in vitro separate compartment model of neuronal cells and extracellular iron oxide nanoparticles (IONs)—amyloid complexes, a traversing proton-induced Coulomb nanoradiator effect (CNR) was found to break up the ION—amyloid fibrils and to induce redox changes in the IONs. We found that the CNR effect caused the conversion of redox-active iron (II) into redox-inactive iron (III) as well as the disruption of the ION—amyloid fibrils without significantly damaging normal neuronal cells. Our observations suggest a non-invasive redox inactivation and β-amyloidolyis-based therapy of neurotoxic Aβ plaque involving a traversing proton Coulomb nanochelator that would not substantially impact normal neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. H.M. Bolt and R. Marchan: Iron dysregulation: an important aspect in toxicology. Arch. Toxicol. 84, 823 (2010).

    Article  CAS  Google Scholar 

  2. M.G. Savelieff, S. Lee, Y. Liu, and M.-H. Lim: Untangling amyloid-β, tau, and metals in Alzheimer’s disease ACS Chem. Biol. 8, 856–865 (2013).

    Article  CAS  Google Scholar 

  3. L. Zecca, M.B.H. Youdim, P. Riederer, J.R. Connor, and R.R. Crichton: Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 5, 863 (2004).

    Article  CAS  Google Scholar 

  4. J.F. Collingwood, R.K.K. Chong, T. Kasama, L. Cervera-Gontard, R.E. Dunin-Borkowski, G. Perry, M. Pósfai, S.L. Siedlak, E.T. Simpson, M.A. Smith, and J. Dobson: Three-dimensional tomographic imaging and characterization of iron compounds within Alzheimer’s plaque core material. J. Alzheimers Dis. 14, 235 (2008).

    Article  CAS  Google Scholar 

  5. J.L. Kirschvink, A. Kobayashi-Kirschvink, and B.J. Woodford: Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci. USA 89, 7683 (1992).

    Article  CAS  Google Scholar 

  6. J.J. Gallagher, M.E. Finnegan, B. Grehana, and J. Dobson: Modest amyloid deposition is associated with iron dysregulation, microglial activation, and oxidative stress. J. Alzheimers Dis. 28, 147 (2012).

    Article  CAS  Google Scholar 

  7. M.A. Smith, P.L.R. Harris, L.M. Sayre, and G. Perry: Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. USA 94, 9866 (1997).

    Article  CAS  Google Scholar 

  8. K. Honda, P.I. Moreira, Q. Liu, S.L. Siedlak, X.W. Zhu, M.A. Smith, and G. Perry: Redox active iron at the center of oxidative stress in Alzheimer disease. Lett. Drug Des. Disc. 2, 479 (2005).

    Article  CAS  Google Scholar 

  9. J. Everett, E. Céspedes, L.R. Shelford, C. Exley, J.F. Collingwood, J. Dobson, G. van der Laan, C.A. Jenkins, E. Arenholz, and N.D. Telling: Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer’s disease peptide b-amyloid (1-42). J. R. Soc. Interface 11, 20140165 (2014).

    Article  CAS  Google Scholar 

  10. S. Teller, I.B. Tahirbegi, M. Mir, J. Samitier, and J. Soriano: Magnetite-Amyloid-β deteriorates activity and functional organization in an in vitro model for Alzheimer’s disease. Sci. Rep. 5, 17261 (2015).

    Article  CAS  Google Scholar 

  11. S. Mirsadeghi, S. Shanehsazzadeh, F. Atyabi, and R. Dinarvand: Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Mater. Sci. Eng. C 59, 390 (2016).

    Article  CAS  Google Scholar 

  12. M. Mahmoudi, F. Quinlan-Pluck, M.P. Monopoli, S. Sheibani, H. Vali, K.A. Dawson, and I. Lynch, Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution. ACS Chem. Neurosci. 4, 475 (2013).

    Article  CAS  Google Scholar 

  13. N.D. Telling, J. Everett, J.F. Collingwood, J. Dobson, G. van der Laan, J.J. Gallagher, J. Wang, and A.P. Hitchcock: Iron biochemistry is correlated with amyloid plaque morphology in an established mouse model of Alzheimer’s disease. Cell Chem. Biol. 24, 1205 (2017).

    Article  CAS  Google Scholar 

  14. J.-K. Kim, S.-J. Seo, H.-T. Kim, K.-H. Kim, M.-H. Chung, K.-R. Kim, and S.-J. Ye: Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Phys. Med. Biol. 57, 8309 (2012).

    Article  Google Scholar 

  15. J. Schuemann, R. Berbeco, D.B. Chithrani, S.H. Cho, R. Kumar, S.J. McMahon, S. Sridhar, and S. Krishnan: Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int. J. Radiat. Oncol. Biol. Phys. 94, 189 (2016).

    Article  Google Scholar 

  16. E. Porcel, O. Tillement, F. Lux, P. Mowat, N. Usami, K. Kobayashi, Y. Furusawa, C. Le Sech, S. Li, and S. Lacombe: Gadolinium-based nanoparticles to improve the hadrontherapy performances. Nanomed.: Nanotechnol. Biol. Med. 10, 1601 (2014).

    Article  CAS  Google Scholar 

  17. H-K. Kim, J. Titze, M. Schöffler, F. Trinter, M. Waitz, J. Voigtsberger, H. Sann, M. Meckel, C. Stuck, U. Lenz, M. Odenweller, N. Neumann, S. Schössler, K. Ullmann-Pfleger, B. Ulrich, R. Costa Fraga, N. Petridis, D. Metz, A. Jung, R. Grisenti, A. Czasch, O. Jagutzki, L. Schmidt, T. Jahnke, H. Schmidt-Böcking, and R. Dörner: Enhanced production of low energy electrons by alpha particle impact. Proc. Natl. Acad. Sci. USA 108, 11821 (2011).

    Article  CAS  Google Scholar 

  18. K. Gokhberg, P. Kolorenč, A.I. Kuleff, and L.S. Cederbaum: Site- and energy-selective slow-electron production through intermolecular Coulombic decay. Nature 505, 661 (2014).

    Article  CAS  Google Scholar 

  19. F. Trinter, M.S. Schoeffler, H.K. Kim, F.P. Sturm, K. Cole, N. Neumann, A. Vredenborg, J. Williams, I. Bocharova, R. Guillemin, M. Simon, A. Belkacem, A.L. Landers, Th Weber, H. Schmidt-Böcking, R. Dörner, and T. Jahnke: Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers. Nature 505, 664 (2014).

    Article  CAS  Google Scholar 

  20. T. Wolfe, D. Chatterjee, J. Lee, J.D. Grant, S. Bhattarai, R. Tailor, G. Goodrich, P. Nicolucci, and S. Krishnan: Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo. Nanomedicine 11, 1277 (2015).

    Article  CAS  Google Scholar 

  21. J.F. Hainfeld, F.A. Dilmanian, Z. Zhong, D.N. Slatkin, J.A. Kalef-Ezra, and H.M. Smilowitz: Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys. Med. Biol. 55, 3045 (2010).

    Article  CAS  Google Scholar 

  22. L.E. Taggart, S.J. McMahon, F.J. Currell, K.M. Prise, and K.T. Butterworth: The role of mitochondrial function in gold nanoparticle mediated radiosensitisation. Cancer Nanotechnol. 7, 8 (2016).

    Article  Google Scholar 

  23. M.L. Shmatov: Importance of electric fields from ionized nanoparticles for radiation therapy. Phys. Part. Nucl. Lett. 14, 533 (2017).

    Article  CAS  Google Scholar 

  24. S.-J. Seo, J.-K. Jeon, S.-M. Han, and J.-K. Kim: Reactive oxygen species-based measurement of the dependence of the Coulomb nanoradiator effect on proton energy and atomic Z value. Int. J. Radiat. Biol. 93, 1239 (2017).

    Article  CAS  Google Scholar 

  25. J.-K. Jeon, S.-M. Han, S.-K. Min, S.-J. Seo, K Ihm, W.-S. Chang, and J.-K. Kim: Coulomb nanoradiator-mediated, site-specific thrombolytic proton treatment with a traversing pristine Bragg peak. Sci. Rep. 6, 37848 (2016).

    Article  CAS  Google Scholar 

  26. E. Cabrera, P. Mathews, E. Mezherichera, T.G. Beach, J. Deng, T.A. Neubert, A. Rostagnoa, and J. Ghiso: Aβ truncated species: Implications for brain clearance mechanisms and amyloid plaque deposition. Biochim. Biophys. - Mol. Basis Dis. 1864, 208 (2018).

    Article  CAS  Google Scholar 

  27. B. Boudaiffa, P. Cloutier, D. Hunting, M.A. Huels, and L. Sanche: Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287, 1658 (2000).

    Article  CAS  Google Scholar 

  28. H. Abdoul-Carime, S. Cecchini, and L. Sanche: Alteration of protein structure induced by low-energy (<18 eV) electrons. I. The peptide and disulfide bridges. Radiat. Res. 158, 23 (2002).

    Article  CAS  Google Scholar 

  29. L. Sanchea: Low energy electron-driven damage in biomolecules. Eur. Phys. J. D 35, 367 (2005).

    Article  Google Scholar 

  30. M. Rezaee, R.P. Hill, and D.A. Jaffray: The exploitation of low-energy electrons in cancer treatment. Radiat. Res. 188, 123 (2017).

    Article  CAS  Google Scholar 

  31. S.J. McMahon, W.B. Hyland, M.F. Muir, J.A. Coulter, S. Jain, K.T. Butterworth, G. Schettino, G.R. Dickson, A.R. Hounsell, J.M. O’Sullivan, K.M. Prise, D.G. Hirst, and F.J. Currell: Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci. Rep. 1, 18 (2011).

    Article  Google Scholar 

  32. J.-K. Jeon, and J.-K. Kim: Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe. J. Synchrotron Rad. 23, 1191 (2016).

    Article  CAS  Google Scholar 

  33. M.L. Monje, S. Mizumatsu, J.R. Fike, and T.D. Palmer: Irradiation induces neural precursor-cell dysfunction. Nat. Med. 8, 955 (2002).

    Article  CAS  Google Scholar 

  34. M.E. Robbins, J.D. Bourland, J.M. Cline, K.T. Wheeler, and S.A. Deadwyler: A model for assessing cognitive impairment after fractionated whole-brain irradiation in nonhuman primates. Radiat. Res. 175, 519 (2011).

    Article  CAS  Google Scholar 

  35. D. Greene-Schloesser, E. Moore, and M.E. Robbins: Molecular pathways: radiation-induced cognitive impairment. Clin Cancer Res. 19, 2294 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed with financial support from the National Research Foundation of Korea funded by the MinistryofEducation, Science and Technology(grantnumbers 2013M2B2B1075774 and 2015 M2A2A7A1045270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Ki Kim.

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2018.102|url|}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y., Kim, JK. Investigation of the redox state of magnetite upon Aβ-fibril formation or proton irradiation; implication of iron redox inactivation and β-amyloidolysis. MRS Communications 8, 955–960 (2018). https://doi.org/10.1557/mrc.2018.102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.102

Navigation