Skip to main content
Log in

Natural eggshell membranes exhibiting programmable shape recovery characteristics

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this study, a novel shape memory polymer (SMP), eggshell membrane (ESM), with macroscopic mesh structures and microscopic crosslinked protein fibers, has shown water-stimulated shape recovery characteristics. Our results show that the collagen triple-helical molecular chains and disulfide-rich motifs in the ESM function as net-points retaining essential structures during deformation, while hydrogen bonds play a key role as switch units for shape recovery through water stimulation. We also demonstrate that programmable shape recovery characteristics of ESM can be obtained by modulating the number of net-points. This study may inspire the design of new programmable SMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J. Leng, X. Lan, Y. Liu, and S. Du: Shape-memory polymers and their composites: Stimulus methods and applications. Prog. Mater. Sci. 56, 1077–1135 (2011).

    Article  CAS  Google Scholar 

  2. T. Xie: Tunable polymer multi-shape memory effect. Nature 464, 267–270 (2010).

    Article  CAS  Google Scholar 

  3. D. Zhao, T. van Leeuwen, J. Cheng, and B.L. Feringa: Dynamic control of chirality and self-assembly of double-stranded helicates with light. Nat. Chem. 9, 250–256 (2017).

    Article  CAS  Google Scholar 

  4. A.H. Gelebart, D.J. Mulder, G. Vantomme, A.P.H.J. Schenning, and D.J. Broer: A rewritable, reprogrammable, dual light-responsive polymer actuator. Angew. Chem. Int. Ed. 56, 13436–13439 (2017).

    Article  CAS  Google Scholar 

  5. M.Y. Razzaq, M. Behl, K. Kratz, and A. Lendlein: Multifunctional hybrid nanocomposites with magnetically controlled reversible shape-memory effect. Adv. Mater. 25, 5730–5733 (2013).

    Article  CAS  Google Scholar 

  6. J. Wang, L. Sun, M. Zou, W. Gao, C. Liu, L. Shang, Z. Gu, and Y. Zhao: Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv. 3, e1700004 (2017).

    Article  Google Scholar 

  7. Y. Xiao, S. Zhou, L. Wang, and T. Gong: Electro-active shape memory properties of poly(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Appl. Mater. Inter. 2, 3506–3514 (2010).

    Article  CAS  Google Scholar 

  8. H. Deng, Y. Dong, J.W. Su, C. Zhang, Y. Xie, C. Zhang, M.R. Maschmann, Y. Lin, and J. Lin: Bioinspired programmable polymer gel controlled by swellable guest medium. ACS. Appl. Mater. Inter. 9, 30900–30908 (2017).

    Article  CAS  Google Scholar 

  9. A.V. Salvekar, W. Huang, R. Xiao, Y.S. Wong, S.S. Venkatraman, K.H. Tay, and Z. Shen: Water-responsive shape recovery induced buckling in biodegradable photo-cross-linked poly(ethylene glycol) (PEG) hydrogel. Acc. Chem. Res. 50, 141–150 (2017).

    Article  CAS  Google Scholar 

  10. M. Ma, L. Guo, D.G. Anderson, and R. Langer: Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339, 186–189 (2013).

    Article  CAS  Google Scholar 

  11. Z. Fang, Y. Kuang, P. Zhou, S. Ming, P. Zhu, Y. Liu, H. Ning, and G. Chen: Programmable shape recovery process of water-responsive shape-memory poly(vinyl alcohol) by wettability contrast strategy. ACS. Appl. Mater. Inter. 9, 5495–5502 (2017).

    Article  CAS  Google Scholar 

  12. X. Xiao and J. Hu: Animal hairs as water-stimulated shape memory materials: mechanism and structural networks in molecular assemblies. Sci. Rep. 6, 26393 (2016).

    Article  CAS  Google Scholar 

  13. Z. Liu, D. Jiao, and Z. Zhang: Remarkable shape memory effect of a natural biopolymer in aqueous environment. Biomaterials 65, 13–21 (2015).

    Article  CAS  Google Scholar 

  14. N.N. Ashton and R.J. Stewart: Self-recovering caddisfly silk: energy dissipating, Ca2+-dependent, double dynamic network fibers. Soft Matter 11, 1667–1676 (2015).

    Article  CAS  Google Scholar 

  15. O. Emile, A.L. Floch, and F. Vollrath: Shape memory in spider draglines. Nature 440, 621–621 (2006).

    Article  CAS  Google Scholar 

  16. M. Baláž: Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomater. 10, 3827–3843 (2014).

    Article  Google Scholar 

  17. Q. Li, Y. Bai, T. Jin, S. Wang, W. Cui, I. Stanciulescu, R. Yang, H. Nie, L. Wang, and X. Zhang: Bioinspired engineering of poly(ethylene glycol) hydrogels and natural protein fibers for layered heart valve constructs. ACS Appl. Mater. Inter. 9, 16524–16535 (2017).

    Article  CAS  Google Scholar 

  18. X. Wang, Q. Li, Y. Yuan, B. Mei, R. Huang, Y. Tian, J. Sun, C. Cao, G. Lu, and G. Liang: New method for effectively and quantitatively labeling cysteine residues on chicken eggshell membrane. Org. Biomol. Chem. 10, 8082–8086 (2012).

    Article  CAS  Google Scholar 

  19. T. Nakano, N. Ikawa, and L. Ozimek: Chemical composition of chicken eggshell and shell membranes. Poult. Sci. 82, 510–514 (2003).

    Article  CAS  Google Scholar 

  20. K. Simkiss and C. Tyler: A histochemical study of the organic matrix of hen egg-shells. Q. J. Microsc. Sci. 98, 19–28 (1957).

    Google Scholar 

  21. N. Li, L. Niu, Y. Qi, C.K.Y. Yiu, H. Ryou, D.D. Arola, J. Chen, D.H. Pashley, and F.R. Tay: Subtleties of biomineralisation revealed by manipulation of the eggshell membrane. Biomaterials 32, 8743–8752 (2011).

    Article  CAS  Google Scholar 

  22. V.K. Kodali, S.A. Gannon, S. Paramasivam, S. Raje, T. Polenova, and C. Thorpe: A novel disulfide-rich protein motif from avian eggshell membranes. PLoS ONE 6, e18187 (2011).

    Article  CAS  Google Scholar 

  23. H. Su, J. Han, N. Wang, Q. Dong, D. Zhang, and C. Zhang: In situ synthesis of lead sulfide nanoclusters on eggshell membrane fibers by an ambient bio-inspired technique. Smart Mater. Struct. 17, 015045 (2008).

    Article  Google Scholar 

  24. C. Li, H. Liao, X. Zhang, X. Yu, and M. Tong: Preparation of cationic modified collagen extracted from leather wastes and their application in dye flocculation. J. Appl. Polym. Sci. 134, 45363 (2017).

    Article  Google Scholar 

  25. H. Du and J. Zhang: Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 6, 3370–3376 (2010).

    Article  CAS  Google Scholar 

  26. T. Yang, M. Chen, X. Hu, Z. Wang, J. Wang, and P.K. Dasgupta: Thiolated eggshell membranes sorb and speciate inorganic selenium. Analyst 136, 83–89 (2011).

    Article  CAS  Google Scholar 

  27. P.Y. Chen, J. Mckittrick, and M.A. Meyers: Biological materials: Functional adaptations and bioinspired designs. Prog. Mater. Sci. 57, 1492–1704 (2012).

    Article  CAS  Google Scholar 

  28. D.A. Carrino, J.E. Dennis, T.M. Wu, J.L. Arias, M.S. Fernandez, J.P. Rodriguez, D.J. Fink, A.H. Heuer, and A.L. Caplan: The avian eggshell extracellular matrix as a model for biomineralization. Connect. Tissue Res. 35, 325–329 (1996).

    Article  CAS  Google Scholar 

  29. F.G. Torres, O.P. Troncoso, F. Piaggio, and A. Hijar: Structure-property relationships of a biopolymer network: the eggshell membrane. Acta Biomater. 6, 3687–3693 (2010).

    Article  CAS  Google Scholar 

  30. C.A. Miles and A.J. Bailey: Thermally labile domains in the collagen molecule. Micron 32, 325–332 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31670981, 31300788) and the Hundred-Talent Program from the Chinese Academy of Sciences. The authors thank Wei Cui and Yuling Ma at the Institute of Metal Research, Chinese Academy of Sciences for assistance with sample preparation and microstructure characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dun Niu, Mingming Ma or Xing Zhang.

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2018.100|url|}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Liu, C., Li, Q. et al. Natural eggshell membranes exhibiting programmable shape recovery characteristics. MRS Communications 8, 903–910 (2018). https://doi.org/10.1557/mrc.2018.100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.100

Navigation