Skip to main content

Advertisement

Log in

Selective laser melting of TiC/H13 steel bulk-form nanocomposites with variations in processing parameters

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

TiC/H13 nanocomposite parts were processed by selective laser melting using various energy densities; one part also underwent hot isostatic pressing (HIP). The effect of energy density and HIPing on densification, microstructure, and hardness were evaluated. It was found that the densification was not largely affected by the energy density, but the HIP-treated sample displayed a large improvement in relative density. With increasing energy density, the microstructures showed high levels of dispersion of nanoparticles, while HIP treatment coarsened the microstructure and induced agglomeration. Both HIP treatment and increased energy density lowered hardness markedly; this was likely due to annealing effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. J.F. Shackelford and W. Alexander: CRC Materials Science and Engineering Handbook (CRC Press, Boca Raton, FL, 2010).

    Google Scholar 

  2. I. Ibrahim, F. Mohamed, and E. Lavernia: Particulate reinforced metal matrix composites—a review. J. Mater. Sci. 26, 1137–1156 (1991).

    Article  CAS  Google Scholar 

  3. S.C. Tjong: Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv. Eng. Mater. 9, 639–652 (2007).

    Article  CAS  Google Scholar 

  4. B. AlMangour, D. Grzesiak, and J.-M. Yang: Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting. Mater. Des. 96, 150–161 (2016).

    Article  CAS  Google Scholar 

  5. E. Pagounis, V. Lindroos, and M. Talvitie: Influence of reinforcement volume fraction and size on the microstructure and abrasion wear resistance of hot isostatic pressed white iron matrix composites. Metall. Mater. Trans. A 27, 4171–4181 (1996).

    Article  Google Scholar 

  6. F. Akhtar: Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites. J. Alloys Compd. 459, 491–497 (2008).

    Article  CAS  Google Scholar 

  7. W. Jiang, and P. Molian: Nanocrystalline TiC powder alloying and glazing of H13 steel using a CO2 laser for improved life of die-casting dies. Surf. Coat. Technol. 135, 139–149 (2001).

    Article  CAS  Google Scholar 

  8. B. AlMangour, D. Grzesiak, and J.-M. Yang: Selective laser melting of TiC reinforced 316L stainless steel matrix nanocomposites: influence of starting TiC particle size and volume content. Mater. Des. 104, 141–151 (2016).

    Article  CAS  Google Scholar 

  9. J. Hashim, L. Looney, and M. Hashmi: Particle distribution in cast metal matrix composites—Part I. J. Mater. Process. Technol. 123, 251–257 (2002).

    Article  CAS  Google Scholar 

  10. F. He, Q. Han, and M.J. Jackson: Nanoparticulate reinforced metal matrix nanocomposites-a review. Int. J. Nanopart. 1, 301–309 (2008).

    Article  CAS  Google Scholar 

  11. S. Kumar and J.-P. Kruth: Composites by rapid prototyping technology. Mater. Des. 31, 850–856 (2010).

    Article  CAS  Google Scholar 

  12. D. Gu: Laser Additive Manufacturing (AM): Classification, Processing Philosophy, and Metallurgical Mechanisms. Laser Additive Manufacturing of High-Performance Materials (Springer, New York, 2015), pp. 15–71.

    Google Scholar 

  13. W.E. Frazier: Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23, 1917–1928 (2014).

    Article  CAS  Google Scholar 

  14. I. Gibson, D. Rosen, and B. Stucker: Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (Springer, New York, 2014).

    Google Scholar 

  15. B. AlMangourand J.-M. Yang: Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing. Mate. Des. 110, 914–924 (2016).

    Article  Google Scholar 

  16. S. Bremen, W. Meiners, and A. Diatlov: Selective laser melting. Laser Tech. J. 9, 33–38 (2012).

    Article  Google Scholar 

  17. S.L Campanelli, N. Contuzzi, A. Angelastro, and A.D. Ludovico: Capabilities and performances of the selective laser melting process. In New Trends in Technologies: Devices, Computer, Communication and Industrial Systems, edited by M. Joo Er (InTech, 2010). Available from http://www.intechopen.com/books/new-trends-in-technologies–devices computer–communication-and-industrial-systems/capabilities-and-per-formances-of-the-selective-laser-melting-process

    Google Scholar 

  18. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe: Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57, 133–164 (2012).

    Article  CAS  Google Scholar 

  19. J.-P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, and M. Rombouts: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J. 11, 26–36 (2005).

    Article  Google Scholar 

  20. M. Rombouts, J.-P. Kruth, L. Froyen, and P. Mercelis: Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann. Manuf. Technol. 55, 187–192 (2006).

    Article  Google Scholar 

  21. G. Roberts, G. Krauss, and R. Kennedy: Tool Steels, 5th ed. (ASM International, USA, 1998), p. 38.

    Google Scholar 

  22. H. Atkinson and S. Davies: Fundamental aspects of hot isostatic pressing: an overview. Metall. Mater. Trans. A 31, 2981–3000 (2000).

    Article  Google Scholar 

  23. A. Simchi and H. Pohl: Direct laser sintering of iron–graphite powder mixture. Mater. Sci. Eng. A 383, 191–200 (2004).

    Article  Google Scholar 

  24. Q. Jia and D. Gu: Selective laser melting additive manufacturing of TiC/ Inconel 718 bulk-form nanocomposites: densification, microstructure, and performance. J. Mater. Res. 29, 1960–1969 (2014).

    Article  CAS  Google Scholar 

  25. H. Niu and I. Chang: Instability of scan tracks of selective laser sintering of high speed steel powder. Scr. Mater. 41, 1229–1234 (1999).

    Article  CAS  Google Scholar 

  26. D. Gu, Y.-C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by Selective Laser Melting (SLM): densification, growth mechanism and wear behavior. Composit. Sci. Technol. 71, 1612–1620 (2011).

    Article  CAS  Google Scholar 

  27. M. Zhong and W. Liu: Laser surface cladding: the state of the art and challenges. Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 224, 1041–1060 (2010).

    Article  Google Scholar 

  28. J.-P. Kruth, G. Levy, F. Klocke, and T. Childs: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann.–Manufac. Technol. 56, 730–759 (2007).

    Article  Google Scholar 

  29. D. Gu, H. Wang, D. Dai, P. Yuan, W. Meiners, and R. Poprawe: Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting. Scr. Mater. 96, 25–28 (2015).

    Article  CAS  Google Scholar 

  30. S. Dadbakhsh and L. Hao: Effect of hot isostatic pressing (HIP) on Al composite parts made from laser consolidated Al/Fe 2 O 3 powder mixtures. J. Mater. Process. Technol. 212, 2474–2483 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, Bandar AlMangour, gratefully acknowledges the financial support provided by the Saudi Arabia Basic Industries Corporation (SABIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bandar AlMangour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlMangour, B., Yu, F., Yan, JM. et al. Selective laser melting of TiC/H13 steel bulk-form nanocomposites with variations in processing parameters. MRS Communications 7, 84–89 (2017). https://doi.org/10.1557/mrc.2017.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.9

Navigation