Skip to main content
Log in

Nitrogen-vacancy diamond sensor: novel diamond surfaces from ab initio simulations

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The great properties of the paramagnetic nitrogen-vacancy (NV) color center in diamond predestine it for nanoscale sensor applications; however, these properties are often compromised when NV centers reside near diamond surface for sensing. Here we show in a mini review that first-principles calculations can characterize diamond surfaces and predict the ideal surface terminators to host NV sensors. We discuss technical issues on the modeling of NV centers close to diamond surfaces, and results on the most employed diamond (100) and the most promising (111) surfaces with various terminators involving hydrogen, oxygen, fluorine, and nitrogen are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B.B. Buckley, C.G.V. de Walle, and D.D. Awschalom: Quantum computing with defects. Proc. Natl. Acad. Sci. USA 107, 8513 (2010).

    Article  CAS  Google Scholar 

  2. J.F. Barry, M.J. Turner, J.M. Schloss, D.R. Glenn, Y. Song, M.D. Lukin, H. Park, and R.L. Walsworth: Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. USA 113, 14133 (2016).

    Article  CAS  Google Scholar 

  3. A.M. Schrand, S.A.C. Hens, and O.A. Shenderova: Nanodiamond particles: properties and perspectives for bioapplications. Crit. Rev. Solid State Mater. Sci. 34, 18 (2009).

    Article  CAS  Google Scholar 

  4. P. Maletinsky, S. Hong, M.S. Grinolds, B. Hausmann, M.D. Lukin, R.L. Walsworth, M. Loncar, and A. Yacoby: A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320 (2012).

    Article  CAS  Google Scholar 

  5. D. Le Sage, K. Arai, D.R. Glenn, S.J. DeVience, L.M. Pham, L. Rahn-Lee, M.D. Lukin, A. Yacoby, A. Komeili, and R.L. Walsworth: Optical magnetic imaging of living cells. Nature 496, 486 (2013).

    Article  Google Scholar 

  6. F. Shi, Q. Zhang, P. Wang, H. Sun, J. Wang, X. Rong, M. Chen, C. Ju, F. Reinhard, H. Chen, J. Wrachtrup, J. Wang, and J. Du: Single-protein spin resonance spectroscopy under ambient conditions. Science 347, 1135 (2015).

    Article  CAS  Google Scholar 

  7. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P.R. Hemmer, F. Jelezko, and J. Wrachtrup: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383 (2009).

    Article  CAS  Google Scholar 

  8. J. Wrachtrup: Defect center room-temperature quantum processors. Proc. Natl. Acad. Sci. USA 107, 9479 (2010).

    Article  CAS  Google Scholar 

  9. L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques: Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014).

    Article  CAS  Google Scholar 

  10. S. Hong, M.S. Grinolds, L.M. Pham, D.L. Sage, L. Luan, R.L. Walsworth, and A. Yacoby: Nanoscale magnetometry with NV centers in diamond. MRS Bull. 38, 155 (2013).

    Article  CAS  Google Scholar 

  11. S. Steinert, F. Ziem, L.T. Hall, A. Zappe, M. Schweikert, N. Götz, A. Aird, G. Balasubramanian, L. Hollenberg, and J. Wrachtrup: Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4, 2588 (2013).

    Article  Google Scholar 

  12. S. Kolkowitz, A. Safira, A.A. High, R.C. Devlin, S. Choi, Q.P. Unterreithmeier, D. Patterson, A.S. Zibrov, V.E. Manucharyan, H. Park, and M.D. Lukin: Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit. Science 347, 1129 (2015).

    Article  CAS  Google Scholar 

  13. S.J. DeVience, L.M. Pham, I. Lovchinsky, A.O. Sushkov, N. Bar-Gill, C. Belthangady, F. Casola, M. Corbett, H. Zhang, M. Lukin, H. Park, A. Yacoby, and R.L. Walsworth: Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat. Nanotechnol. 10, 129 (2015).

    Article  CAS  Google Scholar 

  14. A. Laraoui, F. Dolde, C. Burk, F. Reinhard, J. Wrachtrup, and C.A. Meriles: High-resolution correlation spectroscopy of 13C spins near a nitrogen-vacancy centre in diamond. Nat. Commun. 4, 2685 (2013).

    Article  Google Scholar 

  15. C. Müller, X. Kong, J.-M. Cai, K. Melentijević, A. Stacey, M. Markham, D. Twitchen, J. Isoya, S. Pezzagna, J. Meijer, J.F. Du, M.B. Plenio, B. Naydenov, L.P. McGuinness, and F. Jelezko: Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nat. Commun. 5, 4703 (2014).

    Article  Google Scholar 

  16. X. Chen and W. Zhang: Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev. 46, 734 (2017).

    Article  CAS  Google Scholar 

  17. J. Cai, A. Retzker, F. Jelezko, and M.B. Plenio: A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys. 9, 168 (2013).

    Article  CAS  Google Scholar 

  18. L. Balents: Spin liquids in frustrated magnets. Nature 464, 199 (2010).

    Article  CAS  Google Scholar 

  19. R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth, C. Leighton, V.H. Crespi, and P. Schiffer: Artificial “spin ice” in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303 (2006).

    Article  CAS  Google Scholar 

  20. S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel: Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713 (2011).

    Article  CAS  Google Scholar 

  21. L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart, P. Bergonzo, S. Perruchas, T. Gacoin, M. Chaigneau, H.-C. Chang, V. Jacques, and J.-F. Roch: Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys. Rev. B 82, 115449 (2010).

    Article  Google Scholar 

  22. T. Rosskopf, A. Dussaux, K. Ohashi, M. Loretz, R. Schirhagl, H. Watanabe, S. Shikata, K.M. Itoh, and C.L. Degen: Investigation of Surface Magnetic Noise by Shallow Spins in Diamond. Phys. Rev. Lett. 112, 147602 (2014).

    Article  CAS  Google Scholar 

  23. B.K. Ofori-Okai, S. Pezzagna, K. Chang, M. Loretz, R. Schirhagl, Y. Tao, B.A. Moores, K. Groot-Berning, J. Meijer, and C.L. Degen: Spin properties of very shallow nitrogen vacancy defects in diamond. Phys. Rev. B 86, 081406 (2012).

    Article  Google Scholar 

  24. K. Ohno, F.J. Heremans, L.C. Bassett, B.A. Myers, D.M. Toyli, A.C.B. Jayich, C.J. Palmstrøm, and D.D. Awschalom: Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).

    Article  Google Scholar 

  25. C. Bradac, T. Gaebel, N. Naidoo, M.J. Sellars, J. Twamley, L.J. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, and J.R. Rabeau: Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5, 345 (2010).

    Article  CAS  Google Scholar 

  26. C. Santori, P.E. Barclay, K.-M.C. Fu, and R.G. Beausoleil: Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing. Phys. Rev. B 79, 125313 (2009).

    Article  Google Scholar 

  27. J.B. Cui, J. Ristein, and L. Ley: Dehydrogenation and the surface phase transition on diamond (111): Kinetics and electronic structure. Phys. Rev. B 59, 5847 (1999).

    Article  CAS  Google Scholar 

  28. V. Petráková, A. Taylor, I. Kratochvílová, F. Fendrych, J. Vacík, J. Kučka, J. Štursa, P. Cígler, M. Ledvina, A. Fišerová, P. Kneppo, and M. Nesládek: Luminescence of Nanodiamond Driven by Atomic Functionalization: Towards Novel Detection Principles. Adv. Funct. Mater. 22, 812 (2012).

    Article  Google Scholar 

  29. K.-M.C. Fu, C. Santori, P.E. Barclay, and R.G. Beausoleil: Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation. Appl. Phys. Lett. 96, 121907 (2010).

    Article  Google Scholar 

  30. J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P.A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P.R. Hemmer, F. Jelezko, and J. Wrachtrup: Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3, 1959 (2009).

    Article  CAS  Google Scholar 

  31. B.A. Myers, A. Das, M.C. Dartiailh, K. Ohno, D.D. Awschalom, and A.C. Bleszynski Jayich: Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).

    Article  CAS  Google Scholar 

  32. Y. Romach, C. Müller, T. Unden, L.J. Rogers, T. Isoda, K.M. Itoh, M. Markham, A. Stacey, J. Meijer, S. Pezzagna, B. Naydenov, L.P. McGuinness, N. Bar-Gill, and F. Jelezko: Spectroscopy of surface-induced noise using shallow spins in diamond. Phys. Rev. Lett. 114, 017601 (2015).

    Article  CAS  Google Scholar 

  33. R.C. Bansal, F.J. Vastola, and P.L. Walker: Kinetics of chemisorption of oxygen on diamond. Carbon 10, 443 (1972).

    Article  CAS  Google Scholar 

  34. V.Y. Osipov, A.I. Shames, and A.Y. Vul’: Exchange coupled pairs of dangling bond spins as a new type of paramagnetic defects in nanodiamonds. Phys. B: Condens. Matter 404, 4522 (2009).

    Article  CAS  Google Scholar 

  35. M.W. Doherty, F. Dolde, H. Fedder, F. Jelezko, J. Wrachtrup, N.B. Manson, and L.C.L. Hollenberg: Theory of the ground-state spin of the NV center in diamond. Phys. Rev. B 85, 205203 (2012).

    Article  Google Scholar 

  36. A.M. Edmonds, U.F.S. D’Haenens-Johansson, R.J. Cruddace, M.E. Newton, K.-M.C. Fu, C. Santori, R.G. Beausoleil, D.J. Twitchen, and M.L. Markham: Production of oriented nitrogen-vacancy color centers in synthetic diamond. Phys. Rev. B 86, 035201 (2012).

    Article  Google Scholar 

  37. M. Lesik, T. Plays, A. Tallaire, J. Achard, O. Brinza, L. William, M. Chipaux, L. Toraille, T. Debuisschert, A. Gicquel, J.F. Roch, and V. Jacques: Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates. Diam. Relat. Mater. 56, 47 (2015).

    Article  CAS  Google Scholar 

  38. M. Lesik, J.-P. Tetienne, A. Tallaire, J. Achard, V. Mille, A. Gicquel, J.-F. Roch, and V. Jacques: Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample. Appl. Phys. Lett. 104, 113107 (2014).

    Article  Google Scholar 

  39. M.K. Atumi, J.P. Goss, P.R. Briddon, and M.J. Rayson: Atomistic modeling of the polarization of nitrogen centers in diamond due to growth surface orientation. Phys. Rev. B 88, 245301 (2013).

    Article  Google Scholar 

  40. M. Kaviani, P. Deák, B. Aradi, T. Frauenheim, J.-P. Chou, and A. Gali: Proper surface termination for luminescent near-surface NV centers in diamond. Nano Lett. 14, 4772 (2014).

    Article  CAS  Google Scholar 

  41. J.-P. Chou, A. Retzker, and A. Gali: Nitrogen-terminated diamond (111) surface for room-temperature quantum sensing and simulation. Nano Lett. 17, 2294–2298 (2017).

    Article  CAS  Google Scholar 

  42. Y. Chu, N.P. de Leon, B.J. Shields, B. Hausmann, R. Evans, E. Togan, M.J. Burek, M. Markham, A. Stacey, A.S. Zibrov, A. Yacoby, D.J. Twitchen, M. Loncar, H. Park, P. Maletinsky, and M.D. Lukin: Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett. 14, 1982 (2014).

    Article  CAS  Google Scholar 

  43. A.O. Sushkov, I. Lovchinsky, N. Chisholm, R.L. Walsworth, H. Park, and M.D. Lukin: Magnetic resonance detection of individual proton spins using quantum reporters. Phys. Rev. Lett. 113, 197601 (2014).

    Article  CAS  Google Scholar 

  44. I. Lovchinsky, A.O. Sushkov, E. Urbach, N.P. de Leon, S. Choi, K.D. Greve, R. Evans, R. Gertner, E. Bersin, C. Müller, L. McGuinness, F. Jelezko, R.L. Walsworth, H. Park, and M.D. Lukin: Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic. Science 351, 836 (2016).

    Article  CAS  Google Scholar 

  45. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  46. P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  47. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  48. J. Heyd, G.E. Scuseria, and M. Ernzerhof: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).

    Article  CAS  Google Scholar 

  49. A. Gali, E. Janzén, P. Deák, G. Kresse, and E. Kaxiras: Theory of spin-conserving excitation of the N-V-center in diamond. Phys. Rev. Lett. 103, 186404 (2009).

    Article  Google Scholar 

  50. P. Deák, B. Aradi, T. Frauenheim, E. Janzén, and A. Gali: Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B 81, 153203 (2010).

    Article  Google Scholar 

  51. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  52. A. Lenef and S.C. Rand: Electronic structure of the N-V center in diamond: theory. Phys. Rev. B 53, 13441 (1996).

    Article  CAS  Google Scholar 

  53. A. Gali, M. Fyta, and E. Kaxiras: Ab initio supercell calculations on nitrogen-vacancy center in diamond: electronic structure and hyperfine tensors. Phys. Rev. B 77, 155206 (2008).

    Article  Google Scholar 

  54. J.A. Larsson and P. Delaney: Electronic structure of the nitrogen-vacancy center in diamond from first-principles theory. Phys. Rev. B 77, 165201 (2008).

    Article  Google Scholar 

  55. A.P. Nizovtsev, S.Y. Kilin, A.L. Pushkarchuk, V.A. Pushkarchuk, and F. Jelezko: Theoretical study of hyperfine interactions and optically detected magnetic resonance spectra by simulation of the C291[NV]H172 diamond cluster hosting nitrogen-vacancy center. New J. Phys. 16, 083014 (2014).

    Article  CAS  Google Scholar 

  56. B. Deng, R.Q. Zhang, and X.Q. Shi: New insight into the spin-conserving excitation of the negatively charged nitrogen-vacancy center in diamond. Sci. Rep. 4, srep05144 (2014).

  57. A. Alkauskas, B.B. Buckley, D.D. Awschalom, and C.G.V. de Walle: First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres. New J. Phys. 16, 073026 (2014).

    Article  CAS  Google Scholar 

  58. J.H.N. Loubser and J.A. van Wyk: Diamond Research (London) (Industrial Diamond Information Bureau, London, 1977), pp. 11–15.

    Google Scholar 

  59. J. Ihm, A. Zunger, and M.L. Cohen: Momentum-space formalism for the total energy of solids. J. Phys. C: Solid State Phys. 12, 4409 (1979).

    Article  CAS  Google Scholar 

  60. M. Leslie and N.J. Gillan: The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method. J. Phys. C: Solid State Phys. 18, 973 (1985).

    Article  CAS  Google Scholar 

  61. G. Makov and M.C. Payne: Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014 (1995).

    Article  CAS  Google Scholar 

  62. C.W.M. Castleton and S. Mirbt: Finite-size scaling as a cure for supercell approximation errors in calculations of neutral native defects in InP. Phys. Rev. B 70, 195202 (2004).

    Article  Google Scholar 

  63. I. Dabo, B. Kozinsky, N.E. Singh-Miller, and N. Marzari: Electrostatics in periodic boundary conditions and real-space corrections. Phys. Rev. B 77, 115139 (2008).

    Article  Google Scholar 

  64. S. Lany and A. Zunger: Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys. Rev. B 78, 235104 (2008).

    Article  Google Scholar 

  65. C. Freysoldt, J. Neugebauer, and C.G. Van de Walle: Fully ab initio finite-size corrections for charged-defect Supercell calculations. Phys. Rev. Lett. 102, 016402 (2009).

    Article  Google Scholar 

  66. N.D.M. Hine, K. Frensch, W.M.C. Foulkes, and M.W. Finnis: Supercell size scaling of density functional theory formation energies of charged defects. Phys. Rev. B 79, 024112 (2009).

    Article  Google Scholar 

  67. S.E. Taylor and F. Bruneval: Understanding and correcting the spurious interactions in charged supercells. Phys. Rev. B 84, 075155 (2011).

    Article  Google Scholar 

  68. R. Ramprasad, H. Zhu, P. Rinke, and M. Scheffler: New perspective on formation energies and energy levels of point defects in nonmetals. Phys. Rev. Lett. 108, 066404 (2012).

    Article  CAS  Google Scholar 

  69. Y. Kumagai and F. Oba: Electrostatics-based finite-size corrections for first-principles point defect calculations. Phys. Rev. B 89, 195205 (2014).

    Article  Google Scholar 

  70. C.G.V. de Walle and J. Neugebauer: First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95, 3851 (2004).

    Article  Google Scholar 

  71. C.W.M. Castleton, A. Höglund, and S. Mirbt: Managing the supercell approximation for charged defects in semiconductors: Finite-size scaling, charge correction factors, the band-gap problem, and the ab initio dielectric constant. Phys. Rev. B 73, 035215 (2006).

    Article  Google Scholar 

  72. H.-P. Komsa and A. Pasquarello: Finite-size supercell correction for charged defects at surfaces and interfaces. Phys. Rev. Lett. 110, 095505 (2013).

    Article  Google Scholar 

  73. H.-P. Komsa, N. Berseneva, A.V. Krasheninnikov, and R.M. Nieminen: Charged point defects in the Flatland: accurate formation energy calculations in two-dimensional materials. Phys. Rev. X 4, 031044 (2014).

    CAS  Google Scholar 

  74. A.Y. Lozovoi and A. Alavi: Reconstruction of charged surfaces: general trends and a case study of Pt(110) and Au(110). Phys. Rev. B 68, 245416 (2003).

    Article  Google Scholar 

  75. J.-Y. Noh, H. Kim, and Y.-S. Kim: Stability and electronic structures of native defects in single-layer MoS2. Phys. Rev. B 89, 205417 (2014).

    Article  Google Scholar 

  76. M. Hellström, D. Spångberg, K. Hermansson, and P. Broqvist: Band-filling correction method for accurate adsorption energy calculations: a Cu/ZnO case study. J. Chem. Theory Comput. 9, 4673 (2013).

    Article  Google Scholar 

  77. N.A. Richter, S. Sicolo, S.V. Levchenko, J. Sauer, and M. Scheffler: Concentration of vacancies at metal-oxide surfaces: case study of MgO(100). Phys. Rev. Lett. 111, 045502 (2013).

    Article  Google Scholar 

  78. N. Moll, Y. Xu, O.T. Hofmann, and P. Rinke: Stabilization of semiconductor surfaces through bulk dopants. New J. Phys. 15, 083009 (2013).

    Article  CAS  Google Scholar 

  79. S.-H. Wei and A. Zunger: Disorder effects on the density of states of the II–VI semiconductor alloys Hg0.5Cd0.5Te, Cd0.5Zn0.5Te, and Hg0.5Zn0.5Te. Phys. Rev. B 43, 1662 (1991).

    Article  CAS  Google Scholar 

  80. D.J. Singh: Electronic structure and doping in BaFe2As2 and LiFeAs: density functional calculations. Phys. Rev. B 78, 094511 (2008).

    Article  Google Scholar 

  81. V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler: Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175 (2009).

    Article  CAS  Google Scholar 

  82. D. Vinichenko, M.G. Sensoy, C.M. Friend, and E. Kaxiras: Accurate formation energies of charged defects in solids: a systematic approach. Phys. Rev. B 95, 235310 (2017).

    Article  Google Scholar 

  83. H. Pinto, R. Jones, D.W. Palmer, J.P. Goss, A.K. Tiwari, P.R. Briddon, N.G. Wright, A.B. Horsfall, M.J. Rayson, and S. Öberg: First-principles studies of the effect of (001) surface terminations on the electronic properties of the negatively charged nitrogen-vacancy defect in diamond. Phys. Rev. B 86, 045313 (2012).

    Article  Google Scholar 

  84. S. Lany and A. Zunger: Many-body GW calculation of the oxygen vacancy in ZnO. Phys. Rev. B 81, 113201 (2010).

    Article  Google Scholar 

  85. S.J. Sque, R. Jones, and P.R. Briddon: Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Phys. Rev. B 73, 085313 (2006).

    Article  Google Scholar 

  86. S. Zhao and K. Larsson: Theoretical study of the energetic stability and geometry of terminated and B-doped diamond (111) surfaces. J. Phys. Chem. C 118, 1944 (2014).

    Article  CAS  Google Scholar 

  87. M.M. Hassan and K. Larsson: Effect of surface termination on diamond (100) surface electrochemistry. J. Phys. Chem. C 118, 22995 (2014).

    Article  CAS  Google Scholar 

  88. A.K. Tiwari, J.P. Goss, P.R. Briddon, A.B. Horsfall, N.G. Wright, R. Jones, and M.J. Rayson: Unexpected change in the electron affinity of diamond caused by the ultra-thin transition metal oxide films. Europhys. Lett. 108, 46005 (2014).

    Article  Google Scholar 

  89. Y. Song and K. Larsson: A theoretical study of dye molecules adsorbed onto diamond (111) surfaces. Phys. Status Solidi A 213, 2105 (2016).

    Article  CAS  Google Scholar 

  90. R.S. Mulliken: The Rydberg states of molecules.1a parts I–V1b. J. Am. Chem. Soc. 86, 3183 (1964).

    Article  CAS  Google Scholar 

  91. M. Vörös and A. Gali: Optical absorption of diamond nanocrystals from ab initio density-functional calculations. Phys. Rev. B 80, 161411 (2009).

    Article  Google Scholar 

  92. W. Shockley: On the surface states associated with a periodic potential. Phys. Rev. 56, 317 (1939).

    Article  CAS  Google Scholar 

  93. P. Han, D. Antonov, J. Wrachtrup, and G. Bester: Surface-bound states in nanodiamonds. Phys. Rev. B 95, 195428 (2017).

    Article  Google Scholar 

  94. M.V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, and J.A. Garrido: Chemical control of the charge state of nitrogen-vacancy centers in diamond. Phys. Rev. B 83, 081304 (2011).

    Article  Google Scholar 

  95. P.E. Pehrsson and T.W. Mercer: Oxidation of the hydrogenated diamond (100) surface. Surf. Sci. 460, 49 (2000).

    Article  CAS  Google Scholar 

  96. T.E. Derry, N.W. Makau, and C. Stampfl: Oxygen adsorption on the (1 × 1) and (2 × 1) reconstructed C(111) surfaces: a density functional theory study. J. Phys. Condens. Matter 22, 265007 (2010).

    Article  CAS  Google Scholar 

  97. F.K. de Theije, M.F. Reedijk, J. Arsic, W.J.P. van Enckevort, and E. Vlieg: Atomic structure of diamond {111} surfaces etched in oxygen water vapor. Phys. Rev. B 64, 085403 (2001).

    Article  Google Scholar 

  98. T. Kondo, K. Honda, D.A. Tryk, and A. Fujishima: Covalent modification of single-crystal diamond electrode surfaces. J. Electrochem. Soc. 152, E18 (2005).

    Article  CAS  Google Scholar 

  99. J. Havlik, H. Raabova, M. Gulka, V. Petrakova, M. Krecmarova, V. Masek, P. Lousa, J. Stursa, H.-G. Boyen, M. Nesladek, and P. Cigler: Benchtop fluorination of fluorescent nanodiamonds on a preparative scale: toward unusually hydrophilic bright particles. Adv. Funct. Mater. 26, 4134 (2016).

    Article  CAS  Google Scholar 

  100. M. Schvartzman and S.J. Wind: Plasma fluorination of diamond-like carbon surfaces: mechanism and application to nanoimprint lithography. Nanotechnology 20, 145306 (2009).

    Article  CAS  Google Scholar 

  101. K.J. Rietwyk, S.L. Wong, L. Cao, K.M. O’Donnell, L. Ley, A.T.S. Wee, and C.I. Pakes: Work function and electron affinity of the fluorine-terminated (100) diamond surface. Appl. Phys. Lett. 102, 091604 (2013).

    Article  Google Scholar 

  102. A.K. Tiwari, J.P. Goss, P.R. Briddon, N.G. Wright, A.B. Horsfall, R. Jones, H. Pinto, and M.J. Rayson: Calculated electron affinity and stability of halogen-terminated diamond. Phys. Rev. B 84, 245305 (2011).

    Article  Google Scholar 

  103. T. Szilvási and A. Gali: Fluorine modification of the surface of diamondoids: a time-dependent density functional study. J. Phys. Chem. C 118, 4410 (2014).

    Article  Google Scholar 

  104. P. Siyushev, H. Pinto, M. Vörös, A. Gali, F. Jelezko, and J. Wrachtrup: Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. Phys. Rev. Lett. 110, 167402 (2013).

    Article  CAS  Google Scholar 

  105. J.A. Chaney and C.S. Feigerle: Characterization of chlorinated chemical vapor deposited and natural (100) diamond. Surf. Sci. 425, 245 (1999).

    Article  CAS  Google Scholar 

  106. K.M. O’Donnell, M.T. Edmonds, A. Tadich, L. Thomsen, A. Stacey, A. Schenk, C.I. Pakes, and L. Ley: Extremely high negative electron affinity of diamond via magnesium adsorption. Phys. Rev. B 92, 035303 (2015).

    Article  Google Scholar 

  107. A. Schenk, A. Tadich, M. Sear, K.M. O’Donnell, L. Ley, A. Stacey, and C. Pakes: Formation of a silicon terminated (100) diamond surface. Appl. Phys. Lett. 106, 191603 (2015).

    Article  Google Scholar 

  108. A.K. Schenk, A. Tadich, M.J. Sear, D. Qi, A.T.S. Wee, A. Stacey, and C.I. Pakes: The surface electronic structure of silicon terminated (100) diamond. Nanotechnology 27, 275201 (2016).

    Article  CAS  Google Scholar 

  109. A. Stacey, K.M. O’Donnell, J.-P. Chou, A. Schenk, A. Tadich, N. Dontschuk, J. Cervenka, C. Pakes, A. Gali, A. Hoffman, and S. Prawer: Nitrogen terminated diamond. Adv. Mater. Interfaces 2, 1500079 (2015).

    Article  Google Scholar 

  110. M. Chandran, M. Shasha, S. Michaelson, and A. Hoffman: Nitrogen termination of single crystal (100) diamond surface by radio frequency N2 plasma process: an in-situ x-ray photoemission spectroscopy and secondary electron emission studies. Appl. Phys. Lett. 107, 111602 (2015).

    Article  Google Scholar 

  111. M. Chandran, M. Shasha, S. Michaelson, R. Akhvlediani, and A. Hoffman: Incorporation of nitrogen into polycrystalline diamond surfaces by RF plasma nitridation process at different temperatures: Bonding configuration and thermal stability studies by in situ XPS and HREELS. Phys. Status Solidi A 212, 2487 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the EU FP7 611143 (DIADEMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Gali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, JP., Gali, A. Nitrogen-vacancy diamond sensor: novel diamond surfaces from ab initio simulations. MRS Communications 7, 551–562 (2017). https://doi.org/10.1557/mrc.2017.75

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.75

Navigation