Skip to main content
Log in

On single-phase status and segregation of an as-solidified septenary refractory high entropy alloy

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Phase predictions and characterizations on as-solidified septenary refractory high-entropy alloy, CrMoNbReTaVW, are presented. The simulated solidification process predicts a single body-centered-cubic (BCC) crystal structure with the tendency of compositional segregation. X-ray diffraction results confirm the “single-phase-like” BCC structure, while further experimental characterizations reveal the existence of multiple grains with significantly different compositions yet the same crystal structure and similar lattice parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. G. Sheng and C.T. LIU: Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Progr. Nat. Sci.: Mater. Int. 21, 433 (2011).

    Article  Google Scholar 

  3. G. Anand, R. Goodall, and C.L. Freeman: Role of configurational entropy in body-centred cubic or face-centred cubic phase formation in high entropy alloys. Scr. Mater. 124, 90 (2016).

    Article  CAS  Google Scholar 

  4. M. Lucas, G. Wilks, L. Mauger, J.A. Munoz, O. Senkov, E. Michel, J. Horwath, S. Semiatin, M.B. Stone, and D.L. Abernathy: Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl. Phys. Lett. 100, 251907 (2012).

    Article  Google Scholar 

  5. B. Cantor, I. Chang, P. Knight, and A. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213 (2004).

    Article  Google Scholar 

  6. O. Senkov, G. Wilks, J. Scott, and D. Miracle: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).

    Article  CAS  Google Scholar 

  7. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).

    Article  CAS  Google Scholar 

  8. O. Senkov, J. Scott, S. Senkova, D. Miracle, and C. Woodward: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 509, 6043 (2011).

    Article  CAS  Google Scholar 

  9. R. Kozak, A. Sologubenko, and W. Steurer: Single-phase high-entropy alloys–an overview. Z. Kristallogr.–Crystall. Mater. 230, 55 (2015).

    CAS  Google Scholar 

  10. U. Dahlborg, J. Cornide, M. Calvo-Dahlborg, T.C. Hansen, A. Fitch, Z. Leong, S. Chambreland, and R. Goodall: Structure of some CoCrFeNi and CoCrFeNiPd multicomponent HEA alloys by diffraction techniques. J. Alloys Compd. 681, 330 (2016).

    Article  CAS  Google Scholar 

  11. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kubenová, D. Raabe, G. Eggeler, and E.P. George: Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40 (2016).

    Article  CAS  Google Scholar 

  12. M.G. Poletti, S. Branz, G. Fiore, B.A. Szost, W.A. Crichton, and L. Battezzati: Equilibrium high entropy phases in X-NbTaTiZr (X = Al, V, Cr and Sn) multiprincipal component alloys. J. Alloys Compd. 655, 138 (2016).

    Article  CAS  Google Scholar 

  13. C.-M. Lin and H.-L. Tsai: Equilibrium phase of high-entropy FeCoNiCrCu0.5 alloy at elevated temperature. J. Alloys Compd. 489, 30 (2010).

    Article  CAS  Google Scholar 

  14. E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones: Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106 (2016).

    Article  CAS  Google Scholar 

  15. F. He, Z. Wang, Q. Wu, J. Li, J. Wang, and C.T. Liu: Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scr. Mater. 126, 15 (2017).

    Article  CAS  Google Scholar 

  16. N. Saunders and A.P. Miodownik: CALPHAD (Calculation of Phase Diagrams): a Comprehensive Guide (Elsevier, Oxford, 1998).

    Google Scholar 

  17. B. Zhang, M. Gao, Y. Zhang, S. Yang, and S. Guo: Senary refractory high entropy alloy MoNbTaTiVW. Mater. Sci. Technol., 1743284715Y. 0000000031 (2015).

    Google Scholar 

  18. M. Gao, B. Zhang, S. Yang, and S. Guo: Senary Refractory High-Entropy Alloy HfNbTaTiVZr. Metall. Mater. Trans. A 47, 3333–3345 (2016).

    Article  CAS  Google Scholar 

  19. B. Zhang, M. Gao, Y. Zhang, and S. Guo: Senary refractory high-entropy alloy CrxMoNbTaVW. Calphad 51, 193 (2015).

    Article  CAS  Google Scholar 

  20. G. Gulliver: The quantitative effect of rapid cooling upon the constitution of binary alloys. J. Inst. Met. 13, 263 (1915).

    Google Scholar 

  21. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed. (CRC Press, Boca Raton, Florida, 2004).

    Google Scholar 

  22. B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction, 3rd ed. (Prentice-Hall, Upper Saddle River, New Jersey, 2001).

    Google Scholar 

Download references

Acknowledgments

The current work is funded in part by the NSF EPSCoR CIMM project under award #OIA-1541079 and LA BoR LEQSF (2013-16)-RD-B-01. The use of the LSU Shared Instrumentation Facility (SIF), a part of the CIMM Core User Facilities (CUFs), is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Mu, Y., Gao, M.C. et al. On single-phase status and segregation of an as-solidified septenary refractory high entropy alloy. MRS Communications 7, 78–83 (2017). https://doi.org/10.1557/mrc.2017.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.7

Navigation