Skip to main content
Log in

Memristive response of a new class of hydrated vanadium oxide intercalation compounds

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The practical realization of energy-efficient computing vectors is imperative to address the break-down in the scaling of power consumption with transistor dimensions, which has led to substantial underutilized chip space. Memristive elements that encode information in multiple internal states and reflect the dynamical evolution of these states are a promising alternative. Herein we report the observation of pinched loop hysteretic type-II memristive behavior in single-crystalline nanowires of a versatile class of layered vanadium oxide bronzes with the composition δ[M(H2O)4]0.25V2O5 (M= Co, Ni, Zn), the origin of which is thought to be the diffusion of protons in the interlayer regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc.: Design of ion-implanted MOSFET’s with very small physical dimensions. Proc. IEEE 87, 668 (1999).

    Article  Google Scholar 

  2. M.B. Taylor.: A landscape of the new dark silicon design regime. IEEE Micro 33, 8 (2013).

    Article  Google Scholar 

  3. Y. Zhou and S. Ramanathan.: Correlated electron materials and field effect transistors for logic: a review. Crit. Rev. Solid State Mater. Sci. 38, 286 (2013).

    Article  CAS  Google Scholar 

  4. L.O. Chua, and S.M. Kang.: Memristive devices and systems. Proc. IEEE 64, 209 (1976).

    Article  Google Scholar 

  5. Y.V. Pershin, and M. Di Ventra: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145 (2011).

    Article  Google Scholar 

  6. M.D. Pickett, G. Medeiros-Ribeiro, and R.S. Williams.: A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114 (2013).

    Article  CAS  Google Scholar 

  7. T.H. Kim, E.Y. Jang, N.J. Lee, D.J. Choi, K.J. Lee, J.T. Jang, J.S. Choi, S.H. Moon, and J. Cheon.: Nanoparticle assemblies as memristors. Nano Lett. 9, 2229 (2009).

    Article  CAS  Google Scholar 

  8. P.M. Marley, G.A. Horrocks, K.E. Pelcher, and S. Banerjee.: Transformers: the changing phases of low-dimensional vanadium oxide bronzes. Chem. Commun. 51, 5181 (2015).

    Article  CAS  Google Scholar 

  9. S.D. Ha and S. Ramanathan.: Adaptive oxide electronics: a review. J. Appl. Phys. 110, 71101 (2011).

    Article  Google Scholar 

  10. Z. Sun, T. Liao, Y. Dou, S.M. Hwang, M.-S. Park, L. Jiang, J.H. Kim, and S.X. Dou.: Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014).

    Article  CAS  Google Scholar 

  11. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N.M. Jokerst, S. Palit, D.R. Smith, M. Di Ventra, and D.N. Basov.: Memory metamaterials. Science 325, 1518 (2009).

    Article  CAS  Google Scholar 

  12. L. Whittaker, C.J. Patridge, and S. Banerjee.: Microscopic and nanoscale perspective of the metal-insulator phase transitions of VO2: some new twists to an old tale. J. Phys. Chem. Lett. 2, 745 (2011).

    Article  CAS  Google Scholar 

  13. S. Singh, T.A. Abtew, G. Horrocks, C. Kilcoyne, P.M. Marley, A.A. Stabile, S. Banerjee, P. Zhang, and G. Sambandamurthy.: Selective electrochemical reactivity of rutile VO2 towards the suppression of metal-insulator transition. Phys. Rev. B 93, 125132 (2016).

    Article  Google Scholar 

  14. J. Shi, S.D. Ha, Y. Zhou, F. Schoofs, and S. Ramanathan.: A correlated nickelate synaptic transistor. Nat. Commun. 4, 3676 (2013).

    Article  Google Scholar 

  15. T.-L. Wu, A.A. Stabile, C.J. Patridge, S. Banerjee, and G. Sambandamurthy.: Electrically driven metal-insulator switching in δ-KxV2O5 nanowires. Appl. Phys. Lett. 101, 163502 (2012).

    Article  Google Scholar 

  16. P.M. Marley, A.A. Stabile, C.P. Kwan, S. Singh, P. Zhang, G. Sambandamurthy, and S. Banerjee.: Charge disproportionation and voltage-induced metal-insulator transitions evidenced in β-PbxV2O5 nanowires. Adv. Funct. Mater. 23, 153 (2013).

    Article  CAS  Google Scholar 

  17. P.M. Marley, S. Singh, T.A. Abtew, C. Jaye, D.A. Fischer, P. Zhang, G. Sambandamurthy, and S. Banerjee.: Electronic phase transitions of δ-AgxV2O5 nanowires: Interplay between geometric and electronic structures. J. Phys. Chem. C 118, 21235 (2014).

    Article  CAS  Google Scholar 

  18. B. Yan, and P.A. Maggard.: M(bipyridine)V4O10 (M = Cu, Ag): Hybrid analogues of low-dimensional reduced vanadates. Inorg. Chem. 46, 6640 (2007).

    Article  CAS  Google Scholar 

  19. P.M. Marley, and S. Banerjee.: Reversible interconversion of a divalent vanadium bronze between δ and β quasi-1D structures. Inorg. Chem. 51, 5264 (2012).

    Article  CAS  Google Scholar 

  20. Y. Oka, T. Yao, and N. Yamamoto.: Crystal structures of hydrated vanadium oxides with δ-Type V2O5 Layers: δ-M0.25V2O5·H2O, M, Ca, Ni. J. Solid State Chem. 329, 323 (1997).

    Article  Google Scholar 

  21. M. Clites, B.W. Byles, and E. Pomerantseva.: Effect of aging and hydrotherma treatment on electrochemical performance of chemically pre-intercalated Na-;V-;O nanowires for Na-ion batteries. J. Mater. Chem. A 4, 7754 (2016).

    Article  CAS  Google Scholar 

  22. J.L. Andrews, L.R. De Jesus, T.M. Tolhurst, P.M. Marley, A. Moewes, and S. Banerjee.: Intercalation-induced dimensional reduction and thickness-modulate electronic structure of a layered ternary vanadium oxide. Chem. Mater. 29, 3285 (2017).

    Article  CAS  Google Scholar 

  23. S.E. Savel’ev, A.S. Alexandrov, A.M. Bratkovsky, and R.S. Williams.: Molecular dynamics simulations of oxide memristors: thermal effects. Appl. Phys. A Mater. Sci. Process. 102, 891 (2011).

    Article  Google Scholar 

  24. T. Yao, Y. Oka, and N. Yamamoto.: Layered structures of hydrated vanadium oxides. Part 2. Alkali-metal Intercalates. J. Mater. Chem. 2, 337 (1992).

    Article  CAS  Google Scholar 

  25. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, and R.S. Williams.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429 (2008).

    Article  CAS  Google Scholar 

  26. N.B. Milic, and R.M. Jelic.: Hydrolysis of zinc(II) ion in sodium nitrate, chloride and perchlorate medium: the effect of the anionic medium. J. Chem. Soc., Dalt. Trans. 3, 3597 (1995).

    Article  Google Scholar 

  27. G. Giasson, and P.H. Tewari.: Hydrolysis of Co(II) at elevated temperatures. Can. J. Chem. 56, 435 (1978).

    Article  CAS  Google Scholar 

  28. C.F. Baes, and R.S. Mesmer.: The hydrolysis of cations. Ber. Bunsenges. Phys. Chemie 81, 245 (1977).

    Google Scholar 

  29. A. Parija, D. Prendergast, and S. Banerjee.: Evaluation of multivalent cation insertion in single- and double-layered polymorphs of V2O5. ACS Appl. Mater. Interfaces 9, 23756 (2017).

    Article  CAS  Google Scholar 

  30. E.R. Nightingale.: Phenomenological theory of ion solvation. Effective Radii of hydrated ions. J. Phys. Chem. 63, 1381 (1959).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.L.A. and S.B. acknowledge funding support from the National Science Foundation under DMR 1504702. S.B. and P.J.S. acknowledge support from a College of Science Strategic Transformative Research Program award. Synchrotron data for δ-[Ni(H2O)4]0.25V2O5 was collected at beamline 11-BM of the Advanced Photon Source. S.S., C.K., and G.S. acknowledge partial support from the National Science Foundation under DMR 0847324.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Sambandamurthy or Sarbajit Banerjee.

Additional information

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.64.

Supplementary Materials

Supplementary Materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.64.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrews, J.L., Singh, S., Kilcoyne, C. et al. Memristive response of a new class of hydrated vanadium oxide intercalation compounds. MRS Communications 7, 634–641 (2017). https://doi.org/10.1557/mrc.2017.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.64

Navigation