Skip to main content
Log in

Diamond microelectrode arrays for in vitro neuronal recordings

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A novel microfabrication technique for microelectrode arrays (MEAs) with a full diamond-cell interface is demonstrated. Boron-doped nano-crystalline diamond (BNCD) is used as a conductive electrode material on metal tracks insulated by intrinsic NCD. MEAs successfully recorded spontaneous electrical activity in rat primary cortical neuronal cultures. Patch-clamp measurements show no alterations to cell membrane passive properties or active firing response, for cell developing ex vivo on diamond. Impedance analysis revealed low impedance magnitude of BNCD electrodes, suitable for multi-unit neuronal recordings. Additionally, the impedance phase of the fabricated electrodes shows a high degree of capacitive coupling, ideal for neuron stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. C.E. Nebel, B. Rezek, D. Shin, H. Uetsuka, and N. Yang: Diamond for bio-sensor applications. J. Phys. D Appl. Phys. 40, 6443 (2007).

    Article  CAS  Google Scholar 

  2. A. Kraft, G. Gmbh, and K. Str: Doped diamond: a compact review on a new, versatile electrode material. Int. J. Electrochem. Sci. 2, 355 (2007).

    CAS  Google Scholar 

  3. A. Stett, U. Egert, E. Guenther, F. Hofmann, T. Meyer, W. Nisch, and H. Haemmerle: Biological application of microelectrode arrays in drug discovery and basis research. Anal. Bioanal. Chem. 377, 486 (2003).

    Article  CAS  Google Scholar 

  4. A. Vaitkuviene, M. McDonald, F. Vahidpour, J.-P. Noben, K. Sanen, M. Ameloot, V. Ratautaite, V. Kaseta, G. Biziuleviciene, A. Ramanaviciene, M. Nesladek, and A. Ramanavicius: Impact of differently modified nanocrystalline diamond on the growth of neuroblastoma cells. New Biotechnol. 32, 7 (2015).

    Article  CAS  Google Scholar 

  5. M. Cottance, S. Nazeer, L. Rousseau, G. Lissorgues, A. Bongrain, R. Kiran, E. Scorsone, P. Bergonzo, A. Bendali, S. Picaud, and S. Joucla: Diamond micro-electrode arrays (MEAs): a new route for in-vitro applications. DTIP No. April, 16 (2013).

    Google Scholar 

  6. V. Maybeck, R. Edgington, A. Bongrain, J.O. Welch, E. Scorsone, P. Bergonzo, R.B. Jackman, and A. Offenhäusser: Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials. Adv. Healthc. Mater. 3, 283 (2014).

    Article  CAS  Google Scholar 

  7. M. Alcaide, A. Taylor, M. Fjorback, V. Zachar, and C.P. Pennisi: Boron-doped nanocrystalline diamond electrodes for neural interfaces: in vivo biocompatibility evaluation. Front. Neurosci. 10, 87 (2016).

    Article  Google Scholar 

  8. F. Vahidpour, L. Curley, I. Biró, M. Mcdonald, D. Croux, P. Pobedinskas, K. Haenen, M. Giugliano, Z.V. Živcová, L. Kavan and M. Nesládek: All-diamond functional surface micro-electrode arrays for brain-slice neural analysis. Phys. status solidi 214, (2017).

  9. S. Meijs, M. Alcaide, C. Sørensen, M. McDonald, S. Sørensen, K. Rechendorff, A. Gerhardt, M. Nesladek, N. J. M. Rijkhoff, and C. P. Pennisi: Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo. J. Neural Eng. 13, 56011 (2016).

    Article  CAS  Google Scholar 

  10. R.J. Edgington, A. Thalhammer, J.O. Welch, A. Bongrain, P. Bergonzo, E. Scorsone, R.B. Jackman, and R. Schoepfer: Patterned neuronal networks using nanodiamonds and the effect of varying nanodiamond properties on neuronal adhesion and outgrowth. J. Neural Eng. 10, 56022 (2013).

    Article  CAS  Google Scholar 

  11. W. Kern: The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137, 1887 (1990).

    Article  CAS  Google Scholar 

  12. P. Pobedinskas, G. Degutis, W. Dexters, W. Janssen, S.D. Janssens, B. Conings, B. Ruttens, J. D’Haen, H.-G. Boyen, A. Hardy, M.K. Van Bael, and K. Haenen: Surface plasma pretreatment for enhanced diamond nucleation on AlN. Appl. Phys. Lett. 102, 201609 (2013).

    Article  Google Scholar 

  13. S.M. Ojovan, M. McDonald, N. Rabieh, N. Shmuel, H. Erez, M. Nesladek, and M.E. Spira: Nanocrystalline diamond surfaces for adhesion and growth of primary neurons, conflicting results and rational explanation. Front. Neuroeng. 7, 1 (2014).

    Article  Google Scholar 

  14. D. Linaro, J. Couto, and M. Giugliano: Command-line cellular electrophysiology for conventional and real-time closed-loop experiments. J. Neurosci. Methods 230, 5 (2014).

    Article  Google Scholar 

  15. M. Mahmud, R. Pulizzi, E. Vasilaki, and M. Giugliano: QSpike tools: a generic framework for parallel batch preprocessing of extracellular neuronal signals recorded by substrate microelectrode arrays. Front. Neuroinform. 8, 26 (2014).

    Article  Google Scholar 

  16. T. Vandevelde, M. Nesladek, C. Quaeyhaegens, and L. Stals: Optical emission spectroscopy of the plasma during CVD diamond growth with nitrogen addition. Thin Solid Films 290-;291, 143 (1996).

    Article  Google Scholar 

  17. S.D. Janssens, P. Pobedinskas, J. Vacik, V. Petráková, B. Ruttens, J. D’Haen, M. Nesládek, K. Haenen, and P. Wagner: Separation of intra- and intergranular magnetotransport properties in nanocrystalline diamond films on the metallic side of the metal-insulator transition. New J. Phys. 13 (2011).

  18. D.R. Merrill and P.A. Tresco: Impedance characterization of microarray recording electrodes in vitro. IEEE Trans. Biomed. Eng. 52, 1960 (2005).

    Article  Google Scholar 

  19. K. Honda, T.N. Rao, D.A. Tryk, A. Fujishima, M. Watanabe, K. Yasui, and H. Masuda: Electrochemical characterization of the nanoporous honeycomb diamond electrode as an electrical double-layer capacitor. J. Electrochem. Soc. 147, 659 (2000).

    Article  CAS  Google Scholar 

  20. P. Fromherz and A. Stett: Silicon-neuron junction: capacitive stimulation of an individual neuron on a silicon chip. Phys. Rev. Lett. 21 75, 1670 (1995).

    Article  CAS  Google Scholar 

  21. S.F. Cogan, K.A. Ludwig, C.G. Welle and P. Takmakov: Tissue damage thresholds during therapeutic electrical stimulation. J. Neural Eng. 13, 21001 (2016).

    Article  Google Scholar 

  22. F.O. Morin, Y. Takamura, and E. Tamiya: Investigating neuronal activity with planar microelectrode arrays: achievements and net perspectives. J. Biosci. Bioeng. 100, 131 (2005).

    Article  CAS  Google Scholar 

  23. R. Gerwig, K. Fuchsberger, B. Schroeppel, G.S. Link, G. Heusel, U. Kraushaar, W. Schuhmann, A. Stett, and M. Stelzle: PEDOT—CNT composite microelectrodes for recording and electrostimulation applications: fabrication, morphology, and electrical properties. Front. Neuroeng. 5, 8 (2012).

    Article  CAS  Google Scholar 

  24. O. Frank, V. Petrák, and H. Tarábková: Electrochemistry and in situ Raman spectroelectrochemistry of low and high quality boron doped diamond layers in aqueous electrolyte solution. Electochem. Acta 87, 518 (2013).

    Article  Google Scholar 

  25. K.J. Regehr, M. Domenech, J.T. Koepsel, K.C. Carver, J. Ellison-zelski, W.L. Murphy, L.A. Schuler, E.T. Alarid, and J. David: Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9, 2132 (2009).

    Article  CAS  Google Scholar 

  26. J. M. Nagarah: Planar Silicon Patch-Clamp Electrodes Integrated with Polydimethylsiloxane Microfluidics, University of California, Los Angeles, USA, 2009.

    Google Scholar 

  27. H. Krysova, Z. Vlckova-Zivcova, J. Barton, V. Petrak, M. Nesladek, P. Cigler, and L. Kavan: Visible-light sensitization of boron-doped nanocrystalline diamond through non-covalent surface modification. Phys. Chem. Chem. Phys. 17, 1165 (2015).

    Article  CAS  Google Scholar 

  28. J. Garra, T. Long, J. Currie, T. Schneider, R. White, and M. Paranjape: Dry etching of polydimethylsiloxane for microfluidic systems. J. Vac. Sci. Technol. A Vacuum Surf. Film. 20, 975 (2002).

    Article  CAS  Google Scholar 

  29. P. Fattahi, G. Yang, G. Kim, and M.R. Abidian: A review of organic and inorgani biomaterials for neural interfaces. Adv. Mater. 26, 1846 (2014).

    Article  CAS  Google Scholar 

  30. G. Piret, C. Hébert, J.-P. Mazellier, L. Rousseau, E. Scorsone, M. Cottance, G. Lissorgues, M.O. Heuschkel, S. Picaud, P. Bergonzo, and B. Yvert: 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 53, 173 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the FP7 of the European Commission (NMP project “MERIDIAN” no. 280778-02, IEF “INCA-NANEP” no. 328214, ITN “NAMASEN” no. 264872), the Flanders Research Foundation (FWO, contract no. G088812N) is acknowledged. We also thank Mr. D. Van Dyck and Mr. M. Wijnants for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew McDonald or Antonina Monaco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McDonald, M., Monaco, A., Vahidpour, F. et al. Diamond microelectrode arrays for in vitro neuronal recordings. MRS Communications 7, 683–690 (2017). https://doi.org/10.1557/mrc.2017.62

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.62

Navigation