Skip to main content

Advertisement

Log in

Tissue engineering toward organ-specific regeneration and disease modeling

  • Biomaterials for 3D Cell Biology Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Tissue engineering has been recognized as a translational approach to replace damaged tissue or whole organs. Engineering tissue, however, faces an outstanding knowledge gap in the challenge to fully recapitulate complex organ-specific features. Major components, such as cells, matrix, and architecture, must each be carefully controlled to engineer tissue-specific structure and function that mimics what is found in vivo. Here we review different methods to engineer tissue, and discuss critical challenges in recapitulating the unique features and functional units in four major organs—the kidney, liver, heart, and lung, which are also the top four candidates for organ transplantation in the USA. We highlight advances in tissue engineering approaches to enable the regeneration of complex tissue and organ substitutes, and provide tissue-specific models for drug testing and disease modeling. We discuss the current challenges and future perspectives toward engineering human tissue models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. S. MacNeil: Progress and opportunities for tissue-engineered skin. Nature 445, 874 (2007).

    Article  CAS  Google Scholar 

  2. A. Atala, S.B. Bauer, S. Soker, J.J. Yoo, and A.B. Retik: Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241 (2006).

    Article  Google Scholar 

  3. S.N. Bhatia and D.E. Ingber: Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760 (2014).

    Article  CAS  Google Scholar 

  4. J.P. Wikswo: The relevance and potential roles of microphysiological systems in biology and medicine. Exp. Biol. Med. (Maywood) 239, 1061 (2014).

    Article  Google Scholar 

  5. E.J. Weber, A. Chapron, B.D. Chapron, J.L. Voellinger, K.A. Lidberg, C.K. Yeung, Z. Wang, Y. Yamaura, D.W. Hailey, T. Neumann, D.D. Shen, K.E. Thummel, K.A. Muczynski, J. Himmelfarb, and E.J. Kelly: Development of a microphysiological model of human kidney proximal tubule function. Kidney Int. 90, 627 (2016).

    Article  Google Scholar 

  6. C.E. Fernandez, R.W. Yen, S.M. Perez, H.W. Bedell, T.J. Povsic, W.M. Reichert, and G.A. Truskey: Human vascular microphysiological system for in vitro drug screening. Sci. Rep. 6, 21579 (2016).

    Article  CAS  Google Scholar 

  7. A. Mathur, P. Loskill, K. Shao, N. Huebsch, S. Hong, S.G. Marcus, N. Marks, M. Mandegar, B.R. Conklin, L.P. Lee, and K.E. Healy: Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep. 5, 8883 (2015).

    Article  CAS  Google Scholar 

  8. A. Atala, F.K. Kasper, and A.G. Mikos: Engineering complex tissues. Sci Transl. Med. 4, 160rv12 (2012).

    Article  Google Scholar 

  9. A.G. Mikos, S.W. Herring, P. Ochareon, J. Elisseeff, H.H. Lu, R. Kandel, F.J. Schoen, M. Toner, D. Mooney, A. Atala, M.E. Van Dyke, D. Kaplan, and G. Vunjak-Novakovic: Engineering complex tissues. Tissue Eng. 12, 3307 (2006).

    Article  CAS  Google Scholar 

  10. C.A. Kellar: Solid organ transplantation overview and delection criteria. Am. J. Manag. Care 21, S4 (2015).

    Google Scholar 

  11. J.C. Magee, M.L. Barr, G.P. Basadonna, M.R. Johnson, S. Mahadevan, M.A. McBride, D.E. Schaubel, and A.B. Leichtman: Repeat organ transplantation in the United States, 1996–2005. Am. J. Transplant. 7, 1424 (2007).

    Article  CAS  Google Scholar 

  12. G. Pocock, C.D. Richards, and D.A. Richards: Human Physiology (Oxford University Press, 2013).

    Google Scholar 

  13. K.-Y. Jen, L. Haragsim, and Z.G. Laszik: Kidney microvasculature in health and disease. Exp. Model. Ren. Dis. Pathog. Diagn. 169, 51 (2011).

    Article  CAS  Google Scholar 

  14. D.P. Basile: The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int. 72, 151 (2007).

    Article  CAS  Google Scholar 

  15. D.P. Basile, J.L. Friedrich, J. Spahic, N. Knipe, H. Mang, E.C. Leonard, S. Changizi-Ashtiyani, R.L. Bacallao, B.A. Molitoris, and T.A. Sutton: Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am. J. Physiol. Physiol. 300, F721 (2011).

    Article  CAS  Google Scholar 

  16. D.P. Basile: Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Curr. Opin. Nephrol. Hypertens. 13, 1 (2004).

    Article  Google Scholar 

  17. L.S. Chawla, P.W. Eggers, R.A. Star, and P.L. Kimmel: Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58 (2014).

    Article  Google Scholar 

  18. B. Bussolati and G. Camussi: Therapeutic use of human renal progenitor cells for kidney regeneration. Nat. Rev. Nephrol. 11, 695 (2015).

    Article  CAS  Google Scholar 

  19. M. Gordillo, T. Evans, and V. Gouon-Evans: Orchestrating liver development. Development 142, 2094 (2015).

    Article  CAS  Google Scholar 

  20. P.A. Laizzo: Handbook of Cardiac Anatomy, Physiology, and Devices (Springer International Publishing, 2009).

    Google Scholar 

  21. T.J. Desai, D.G. Brownfield, and M.A. Krasnow: Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507, 190 (2014).

    Article  CAS  Google Scholar 

  22. R.E. Bulger and D.C. Dobyan: Recent structure-function relationships in normal and injured mammalian kidneys. Anat. Rec. 205, 1 (1983).

    Article  CAS  Google Scholar 

  23. M. Furriols, J. Chillarón, C. Mora, A. Castelló, J. Bertran, M. Camps, X. Testar, S. Vilaró, A. Zorzano, and M. Palacín: rBAT, related to L-cysteine transport, is localized to the microvilli of proximal straight tubules, and its expression is regulated in kidney by development. J. Biol. Chem. 268, 27060 (1993).

    Article  CAS  Google Scholar 

  24. A. Greka and P. Mundel: Cell biology and pathology of podocytes. Annu. Rev. Physiol. 74, 299 (2012).

    Article  CAS  Google Scholar 

  25. H. Pavenstädt: Roles of the podocyte in glomerular function. Am. J. Physiol. Renal Physiol. 278, F173 (2000).

    Article  Google Scholar 

  26. A.H.J. Salmon, C.R. Neal, and S.J. Harper: New aspects of glomerular filtration barrier structure and function: five layers (at least) not three. Curr. Opin. Nephrol. Hypertens. 18, 197 (2009).

    CAS  Google Scholar 

  27. I. Shirato, Y. Tomino, H. Koide, and T. Sakai: Fine structure of the glomerular basement membrane of the rat kidney visualized by high-resolution scanning electron microscopy. Cell Tissue Res. 266, 1 (1991).

    Article  CAS  Google Scholar 

  28. P. Cortes, M. Méndez, B.L. Riser, C.J. Guérin, A. Rodríguez-Barbero, C. Hassett, and J. Yee: F-actin fiber distribution in glomerular cells: structural and functional implications. Kidney Int. 58, 2452 (2000).

    Article  CAS  Google Scholar 

  29. E.E. Hui and S.N. Bhatia: Micromechanical control of cell–cell interactions. Proc. Natl. Acad. Sci. U. S. A. 104, 5722 (2007).

    Article  CAS  Google Scholar 

  30. D.R. Albrecht, G.H. Underhill, T.B. Wassermann, R.L. Sah, and S.N. Bhatia: Probing the role of multicellular organization in three-dimensional microenvironments. Nat. Methods 3, 369 (2006).

    Article  CAS  Google Scholar 

  31. S.N. Bhatia, G.H. Underhill, K.S. Zaret, and I.J. Fox: Cell and tissue engineering for liver disease. Sci. Transl. Med. 6, 245sr2 (2014).

    Article  Google Scholar 

  32. K.R. Stevens, M.D. Ungrin, R.E. Schwartz, S. Ng, B. Carvalho, K.S. Christine, R.R. Chaturvedi, C.Y. Li, P.W. Zandstra, C.S. Chen, and S.N. Bhatia: InVERT molding for scalable control of tissue microarchitecture. Nat. Commun. 4, 1847 (2013).

    Article  CAS  Google Scholar 

  33. J. Shan, D.J. Logan, D.E. Root, A.E. Carpenter, and S.N. Bhatia: High-throughput platform for identifying molecular factors involved in phenotypic stabilization of primary human hepatocytes in vitro. J. Biomol. Screen. 21, 897 (2016).

    Article  CAS  Google Scholar 

  34. M. Krishna: Microscopic anatomy of the liver. Clin. Liver Dis. 2, S4 (2013).

    Article  Google Scholar 

  35. A.M. Rappaport, Z.J. Borowy, W.M. Lougheed, and W.N. Lotto: Subdivision of hexagonal liver lobules into a structural and functional unit. Role in hepatic physiology and pathology. Anat. Rec. 119, 11 (1954).

    Article  CAS  Google Scholar 

  36. E. Wisse, F. Braet, D. Dianzhong Luo, R. De Zanger, D. Jans, E. Crabbe, and A. Vermoesen: Structure and function of sinusoidal lining cells in the liver. Toxicol. Pathol. 24, 100 (1996).

    Article  CAS  Google Scholar 

  37. E. Wisse, F. Braet, D. Luo, D. Vermijlen, M. Eddouks, M. Konstandoulaki, C. Empsen, and R.B. de Zanger: Endothelial cells of the hepatic sinusoids: a review. In Liver Diseases and Hepatic Sinusoidal Cells, edited by K. Tanikawa and T. Ueno (Springer, Tokyo, Japan, 1999), pp. 17–53.

    Chapter  Google Scholar 

  38. M. Bilzer, F. Roggel, and A.L. Gerbes: Role of Kupffer cells in host defense and liver disease. Liver Int. 26, 1175 (2006).

    Article  CAS  Google Scholar 

  39. J.E. Puche, Y. Saiman, and S.L. Friedman: Hepatic stellate cells and liver fibrosis. Compr. Physiol. 3, 1473 (2013).

    Article  Google Scholar 

  40. D.E. Malarkey, K. Johnson, L. Ryan, G. Boorman, and R.R. Maronpot: New insights into functional aspects of liver morphology. Toxicol. Pathol. 33, 27 (2005).

    Article  CAS  Google Scholar 

  41. G. Buckberg, J.I.E. Hoffman, A. Mahajan, S. Saleh, and C. Coghlan: Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation 118, 2571 (2008).

    Article  Google Scholar 

  42. A.A. Young and B.R. Cowan: Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 14, 49 (2012).

    Article  Google Scholar 

  43. F. Poveda, D. Gil, E. Martí, A. Andaluz, M. Ballester, and F. Carreras: Helical structure of the cardiac ventricular anatomy assessed by diffusion tensor magnetic resonance imaging with multiresolution tractography. Rev. Española Cardiol. Engl. Ed. 66, 782 (2013).

    Article  Google Scholar 

  44. M.J. Kocica, A.F. Corno, F. Carreras-Costa, M. Ballester-Rodes, M.C. Moghbel, C.N.C. Cueva, V. Lackovic, V.I. Kanjuh, and F. Torrent-Guasp: The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium. Eur. J. Cardio-Thorac. Surg. 29, S21 (2006).

    Article  Google Scholar 

  45. B. Korecky, C.M. Hai, and K. Rakusan: Functional capillary density in normal and transplanted rat hearts. Can. J. Physiol. Pharmacol. 60, 23 (1982).

    Article  CAS  Google Scholar 

  46. D.Y. Cheung, B. Duan, and J.T. Butcher: Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin. Biol. Ther. 15, 1155 (2015).

    Article  CAS  Google Scholar 

  47. F.J. Schoen and R.J. Levy: Tissue heart valves: current challenges and future research perspectives. J. Biomed. Mater. Res. 47, 439 (1999).

    Article  CAS  Google Scholar 

  48. W. McNulty and O.S. Usmani: Techniques of assessing small airways dysfunction. Eur. Clin. Respir. J. 1, 25898 (2014).

    Article  Google Scholar 

  49. C.C.W. Hsia, D.M. Hyde, and E.R. Weibel: Lung structure and the intrinsic challenges of gas exchange. Compr. Physiol. 6, 827 (2016).

    Article  Google Scholar 

  50. R.R. Mercer, M.L. Russell, and J.D. Crapo: Alveolar septal structure in different species. J. Appl. Physiol. 77, 1060 (1994).

    Article  CAS  Google Scholar 

  51. H. Itoh, M. Nishino, and H. Hatabu: Architecture of the lung: morphology and function. J. Thorac. Imaging 19, 221 (2004).

    Article  Google Scholar 

  52. E.R. Weibel and B.W. Knight: A morphometric study on the thickness of the pulmonary air-blood barrier. J. Cell Biol. 21, 367 (1964).

    Article  CAS  Google Scholar 

  53. J.B. West: Comparative physiology of the pulmonary blood-gas barrier: the unique avian solution. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1625 (2009).

    Article  CAS  Google Scholar 

  54. M.A. Roberts, D. Tran, K.L.K. Coulombe, M. Razumova, M. Regnier, C.E. Murry, and Y. Zheng: Stromal cells in dense collagen promote cardiomyocyte and microvascular patterning in engineered human heart tissue. Tissue Eng. A 22, 633 (2016).

    Article  CAS  Google Scholar 

  55. S.S. Nunes, J.W. Miklas, J. Liu, R. Aschar-Sobbi, Y. Xiao, B. Zhang, J. Jiang, S. Massé, M. Gagliardi, A. Hsieh, N. Thavandiran, M.A. Laflamme, K. Nanthakumar, G.J. Gross, P.H. Backx, G. Keller, and M. Radisic: Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10, 781 (2013).

    Article  CAS  Google Scholar 

  56. S.F. Badylak, D. Taylor, and K. Uygun: Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13, 27 (2011).

    Article  CAS  Google Scholar 

  57. M.E. Scarritt, N.C. Pashos, and B.A. Bunnell: A review of cellularization strategies for tissue engineering of whole organs. Front. Bioeng. Biotechnol. 3, 43 (2015).

    Article  Google Scholar 

  58. H.C. Ott, T.S. Matthiesen, S.-K. Goh, L.D. Black, S.M. Kren, T.I. Netoff, and D.A. Taylor: Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 14, 213 (2008).

    Article  CAS  Google Scholar 

  59. H.C. Ott, B. Clippinger, C. Conrad, C. Schuetz, I. Pomerantseva, L. Ikonomou, D. Kotton, and J.P. Vacanti: Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16, 927 (2010).

    Article  CAS  Google Scholar 

  60. T.H. Petersen, E.A. Calle, L. Zhao, E.J. Lee, L. Gui, M.B. Raredon, K. Gavrilov, T. Yi, Z.W. Zhuang, C. Breuer, E. Herzog, and L.E. Niklason: Tissue-engineered lungs for in vivo implantation. Science 329, 538 (2010).

    Article  CAS  Google Scholar 

  61. J.J. Song, J.P. Guyette, S.E. Gilpin, G. Gonzalez, J.P. Vacanti, and H.C. Ott: Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat. Med. 19, 646 (2013).

    Article  CAS  Google Scholar 

  62. A. Hasan, A. Paul, N.E. Vrana, X. Zhao, A. Memic, Y.-S. Hwang, M.R. Dokmeci, and A. Khademhosseini: Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35, 7308 (2014).

    Article  CAS  Google Scholar 

  63. A. Fatehullah, S.H. Tan, and N. Barker: Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18, 246 (2016).

    Article  Google Scholar 

  64. T.J. Keane, I.T. Swinehart, and S.F. Badylak: Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods 84, 25 (2015).

    Article  CAS  Google Scholar 

  65. K.H. Nakayama, C.A. Batchelder, C.I. Lee, and A.F. Tarantal: Decellularized rhesus monkey kidney as a Three-Dimensional Scaffold for Renal Tissue Engineering. Tissue Eng. A 16, 2207 (2010).

    Article  CAS  Google Scholar 

  66. P.M. Crapo, T.W. Gilbert, and S.F. Badylak: An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233 (2011).

    Article  CAS  Google Scholar 

  67. Q. Wu, J. Bao, Y. Zhou, Y. Wang, Z. Du, Y. Shi, L. Li, and H. Bu: Optimizing perfusion-decellularization methods of porcine livers for clinical-scale whole-organ bioengineering. Biomed. Res. Int. 2015, 785474 (2015).

    Google Scholar 

  68. N. Malik and M.S. Rao: A review of the methods for human iPSC derivation. Methods Mol. Biol. 997, 23 (2013).

    Article  CAS  Google Scholar 

  69. Y. Shi, H. Inoue, J.C. Wu, and S. Yamanaka: Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16, 115 (2016).

    Article  Google Scholar 

  70. X. Ren, P.T. Moser, S.E. Gilpin, T. Okamoto, T. Wu, L.F. Tapias, F.E. Mercier, L. Xiong, R. Ghawi, D.T. Scadden, D.J. Mathisen, and H.C. Ott: Engineering pulmonary vasculature in decellularized rat and human lungs. Nat. Biotechnol. 33, 1097 (2015).

    Article  CAS  Google Scholar 

  71. S.X.L. Huang, M.N. Islam, J. O’Neill, Z. Hu, Y.-G. Yang, Y.-W. Chen, M. Mumau, M.D. Green, G. Vunjak-Novakovic, J. Bhattacharya, and H.-W. Snoeck: Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat. Biotechnol. 32, 84 (2013).

    Article  Google Scholar 

  72. T.-Y. Lu, B. Lin, J. Kim, M. Sullivan, K. Tobita, G. Salama, and L. Yang: Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat. Commun. 4, 2307 (2013).

    Article  Google Scholar 

  73. M.L. Sutherland, K.M. Fabre, and D.A. Tagle: The National Institutes of Health Microphysiological Systems Program focuses on a critical challenge in the drug discovery pipeline. Stem Cell Res. Ther. 4(Suppl. 1), I1 (2013).

    Article  Google Scholar 

  74. C.L. Stokes, M. Cirit, and D.A. Lauffenburger: Physiome-on-a-chip: the challenge of ‘scaling’ in design, operation, and translation of microphysiological systems. CPT Pharmacometrics Syst. Pharmacol. 4, 559 (2015).

    Article  CAS  Google Scholar 

  75. U. Marx, T.B. Andersson, A. Bahinski, M. Beilmann, S. Beken, F.R. Cassee, M. Cirit, M. Daneshian, S. Fitzpatrick, O. Frey, C. Gaertner, C. Giese, L. Griffith, T. Hartung, M.B. Heringa, J. Hoeng, W.H. de Jong, H. Kojima, J. Kuehnl, M. Leist, A. Luch, I. Maschmeyer, D. Sakharov, A.J.A.M. Sips, T. Steger-Hartmann, D.A. Tagle, A. Tonevitsky, T. Tralau, S. Tsyb, A. van de Stolpe, R. Vandebriel, P. Vulto, J. Wang, J. Wiest, M. Rodenburg, and A. Roth: Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33, 272 (2016).

    Google Scholar 

  76. L. Vernetti, A. Gough, N. Baetz, S. Blutt, J.R. Broughman, J.A. Brown, J. Foulke-Abel, N. Hasan, J. In, E. Kelly, O. Kovbasnjuk, J. Repper, N. Senutovitch, J. Stabb, C. Yeung, N.C. Zachos, M. Donowitz, M. Estes, J. Himmelfarb, G. Truskey, J.P. Wikswo, and D.L. Taylor: Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci. Rep. 7, 42296 (2017).

    Article  CAS  Google Scholar 

  77. P.G. Miller and M.L. Shuler: Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol. Bioeng. 113, 2213 (2016).

    Article  CAS  Google Scholar 

  78. D. Qin, Y. Xia, and G.M. Whitesides: Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491 (2010).

    Article  CAS  Google Scholar 

  79. S.K. Sia and G.M. Whitesides: Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563 (2003).

    Article  CAS  Google Scholar 

  80. E. Berthier, E.W.K. Young, and D. Beebe: Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 12, 1224 (2012).

    Article  CAS  Google Scholar 

  81. Y. Xia and G.M. Whitesides: Soft lithography. Annu. Rev. Mater. Sci. 28, 153 (1998).

    Article  CAS  Google Scholar 

  82. J.W. Song, W. Gu, N. Futai, K.A. Warner, J.E. Nor, and S. Takayama: Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Anal. Chem. 77, 3993 (2005).

    Article  CAS  Google Scholar 

  83. C. Zheng, X. Zhang, C. Li, Y. Pang, and Y. Huang: Microfluidic device for studying controllable hydrodynamic flow induced cellular responses. Anal. Chem. 89, 3710 (2017).

    Article  CAS  Google Scholar 

  84. Q. Smith and S. Gerecht: Going with the flow: microfluidic platforms in vascular tissue engineering. Curr. Opin. Chem. Eng. 3, 42 (2014).

    Article  Google Scholar 

  85. S.A. Lee, S.E. Chung, W. Park, S.H. Lee, and S. Kwon: Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography. Lab Chip 9, 1670 (2009).

    Article  CAS  Google Scholar 

  86. B. Chueh, D. Huh, C.R. Kyrtsos, T. Houssin, N. Futai, and S. Takayama: Leakage-free bonding of porous membranes into layered microfluidic array systems. Anal. Chem. 79, 3504 (2007).

    Article  CAS  Google Scholar 

  87. D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, and D.E. Ingber: Reconstituting organ-level lung functions on a chip. Science 328, 1662 (2010).

    Article  CAS  Google Scholar 

  88. R. Kane: Patterning proteins and cells using soft lithography. Biomaterials 20, 2363 (1999).

    Article  CAS  Google Scholar 

  89. P.S. Dittrich and A. Manz: Lab-on-a-chip: microfluidics in drug discovery. Nat. Rev. Drug Discov. 5, 210 (2006).

    Article  CAS  Google Scholar 

  90. A. Khademhosseini, R. Langer, J. Borenstein, and J.P. Vacanti: Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U. S. A. 103, 2480 (2006).

    Article  CAS  Google Scholar 

  91. K.-J. Jang, A.P. Mehr, G.A. Hamilton, L.A. McPartlin, S. Chung, K.-Y. Suh, and D.E. Ingber: Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5, 1119 (2013).

    Article  CAS  Google Scholar 

  92. S. Kim, S.C. LesherPerez, B.C. Kim, C. Yamanishi, J.M. Labuz, B. Leung, and S. Takayama: Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip. Biofabrication 8, 15021 (2016).

    Article  Google Scholar 

  93. M. Gori, M.C. Simonelli, S.M. Giannitelli, L. Businaro, M. Trombetta, and A. Rainer: Investigating nonalcoholic fatty liver disease in a liver-on-a-chip microfluidic device. PLoS ONE 11, e0159729 (2016).

    Article  Google Scholar 

  94. K.H. Benam, R. Villenave, C. Lucchesi, A. Varone, C. Hubeau, H.-H. Lee, S.E. Alves, M. Salmon, T.C. Ferrante, J.C. Weaver, A. Bahinski, G.A. Hamilton, and D.E. Ingber: Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods 13, 151 (2015).

    Article  Google Scholar 

  95. P.J. Lee, P.J. Hung, and L.P. Lee: An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 97, 1340 (2007).

    Article  CAS  Google Scholar 

  96. A. Legendre, R. Baudoin, G. Alberto, P. Paullier, M. Naudot, T. Bricks, J. Brocheton, S. Jacques, J. Cotton, and E. Leclerc: Metabolic characterization of primary rat hepatocytes cultivated in parallel microfluidic biochips. J. Pharm. Sci. 102, 3264 (2013).

    Article  CAS  Google Scholar 

  97. D.-H. Kim, E.A. Lipke, P. Kim, R. Cheong, S. Thompson, M. Delannoy, K.-Y. Suh, L. Tung, and A. Levchenko: Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc. Natl. Acad. Sci. U. S. A. 107, 565 (2010).

    Article  CAS  Google Scholar 

  98. Y. Tanaka, K. Sato, T. Shimizu, M. Yamato, T. Okano, T. Kitamori, K.E. Healy, A. Folch, and T. Okano: A micro-spherical heart pump powered by cultured cardiomyocytes. Lab Chip 7, 207 (2007).

    Article  CAS  Google Scholar 

  99. D. Carson, M. Hnilova, X. Yang, C.L. Nemeth, J.H. Tsui, A.S.T. Smith, A. Jiao, M. Regnier, C.E. Murry, C. Tamerler, and D.-H. Kim: Nanotopography-induced structural anisotropy and sarcomere development in human cardiomyocytes derived from induced pluripotent stem cells. ACS Appl. Mater. Interfaces 8, 21923 (2016).

    Article  CAS  Google Scholar 

  100. J. Macadangdang, X. Guan, A.S.T. Smith, R. Lucero, S. Czerniecki, M.K. Childers, D.L. Mack, and D.-H. Kim: Nanopatterned human iPSC-based model of a dystrophin-null cardiomyopathic phenotype. Cell. Mol. Bioeng. 8, 320 (2015).

    Article  CAS  Google Scholar 

  101. B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, and N.A. Peppas: Hydrogels in regenerative medicine. Adv. Mater. 21, 3307 (2009).

    Article  CAS  Google Scholar 

  102. L.G. Griffith and M.A. Swartz: Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211 (2006).

    Article  CAS  Google Scholar 

  103. F.J. O’Brien: Biomaterials & scaffolds for tissue engineering. Mater. Today 14, 88 (2011).

    Article  Google Scholar 

  104. J. Tien: Microfluidic approaches for engineering vasculature. Curr. Opin. Chem. Eng. 3, 36 (2014).

    Article  Google Scholar 

  105. K.M. Chrobak, D.R. Potter, and J. Tien: Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71, 185 (2006).

    Article  CAS  Google Scholar 

  106. K.H.K. Wong, J.G. Truslow, A.H. Khankhel, K.L.S. Chan, and J. Tien: Artificial lymphatic drainage systems for vascularized microfluidic scaffolds. J. Biomed. Mater. Res. A 101A, 2181 (2013).

    Article  CAS  Google Scholar 

  107. A.P. Golden and J. Tien: Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7, 720 (2007).

    Article  CAS  Google Scholar 

  108. J.S. Miller, K.R. Stevens, M.T. Yang, B.M. Baker, D.-H.T. Nguyen, D.M. Cohen, E. Toro, A.A. Chen, P.A. Galie, X. Yu, R. Chaturvedi, S.N. Bhatia, and C.S. Chen: Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768 (2012).

    Article  CAS  Google Scholar 

  109. J. Huling, I.K. Ko, A. Atala, and J.J. Yoo: Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts. Acta Biomater. 32, 190 (2016).

    Article  CAS  Google Scholar 

  110. Y. Zheng, J. Chen, M. Craven, N.W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J.A. López, and A.D. Stroock: In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl. Acad. Sci. U. S. A. 109, 9342 (2012).

    Article  CAS  Google Scholar 

  111. B. Zhang, M. Montgomery, M.D. Chamberlain, S. Ogawa, A. Korolj, A. Pahnke, L.A. Wells, S. Massé, J. Kim, L. Reis, A. Momen, S.S. Nunes, A.R. Wheeler, K. Nanthakumar, G. Keller, M.V. Sefton, and M. Radisic: Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat. Mater. 15, 669 (2016).

    Article  CAS  Google Scholar 

  112. E.J. Lee, D.E. Kim, E.U. Azeloglu, and K.D. Costa: Engineered cardiac organoid chambers: toward a functional biological model ventricle. Tissue Eng. A 14, 215 (2008).

    Article  CAS  Google Scholar 

  113. P. Bajaj, R.M. Schweller, A. Khademhosseini, J.L. West, and R. Bashir: 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng. 16, 247 (2014).

    Article  CAS  Google Scholar 

  114. L.A. Vernetti, N. Senutovitch, R. Boltz, R. DeBiasio, T. Ying Shun, A. Gough, and D.L. Taylor: A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp. Biol. Med. 241, 101 (2016).

    Article  CAS  Google Scholar 

  115. G. Ligresti, R.J. Nagao, J. Xue, Y.J. Choi, J. Xu, S. Ren, T. Aburatani, S.K. Anderson, J.W. MacDonald, T.K. Bammler, S.M. Schwartz, K.A. Muczynski, J.S. Duffield, J. Himmelfarb, and Y. Zheng: A Novel three-dimensional human peritubular microvascular system. J. Am. Soc. Nephrol. 27, 2370 (2016).

    Article  CAS  Google Scholar 

  116. R.R. Chaturvedi, K.R. Stevens, R.D. Solorzano, R.E. Schwartz, J. Eyckmans, J.D. Baranski, S.C. Stapleton, S.N. Bhatia, and C.S. Chen: Patterning vascular networks in vivo for tissue engineering applications. Tissue Eng. C Methods 21, 509 (2015).

    Article  CAS  Google Scholar 

  117. A. Mihic, J. Li, Y. Miyagi, M. Gagliardi, S.-H. Li, J. Zu, R.D. Weisel, G. Keller, and R.-K. Li: The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials 35, 2798 (2014).

    Article  CAS  Google Scholar 

  118. N.L. Tulloch, V. Muskheli, M.V. Razumova, F.S. Korte, M. Regnier, K.D. Hauch, L. Pabon, H. Reinecke, and C.E. Murry: Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res. 109, 47 (2011).

    Article  CAS  Google Scholar 

  119. S.V. Murphy, A. Skardal, and A. Atala: Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. A 101A, 272 (2013).

    Article  CAS  Google Scholar 

  120. A. Skardal and A. Atala: Biomaterials for Integration with 3-D bioprinting. Ann. Biomed. Eng. 43, 730 (2014).

    Article  Google Scholar 

  121. F. Pati, J. Jang, D.-H. Ha, S. Won Kim, J.-W. Rhie, J.-H. Shim, D.-H. Kim, and D.-W. Cho: Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5, 3935 (2014).

    Article  CAS  Google Scholar 

  122. Y. He, F. Yang, H. Zhao, Q. Gao, B. Xia, and J. Fu: Research on the printability of hydrogels in 3D bioprinting. Sci. Rep. 6, 29977 (2016).

    Article  CAS  Google Scholar 

  123. E.M. Ahmed: Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6, 105 (2015).

    Article  CAS  Google Scholar 

  124. A.L. Rutz, K.E. Hyland, A.E. Jakus, W.R. Burghardt, and R.N. Shah: A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27, 1607 (2015).

    Article  CAS  Google Scholar 

  125. A. Skardal, M. Devarasetty, H.-W. Kang, I. Mead, C. Bishop, T. Shupe, S.J. Lee, J. Jackson, J. Yoo, S. Soker, and A. Atala: A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater. 25, 24 (2015).

    Article  CAS  Google Scholar 

  126. C. Mandrycky, Z. Wang, K. Kim, and D.-H. Kim: 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34, 422 (2016).

    Article  CAS  Google Scholar 

  127. I.T. Ozbolat and M. Hospodiuk: Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76, 321 (2016).

    Article  CAS  Google Scholar 

  128. R. Raman and R. Bashir: Chapter 6—stereolithographic 3D bioprinting for biomedical applications. In Essentials of 3D Biofabrication and Translation, edited by A. Atala and J.J. Yoo (Academic Press, 2015), pp. 89–121.

    Chapter  Google Scholar 

  129. K.A. Homan, D.B. Kolesky, M.A. Skylar-Scott, J. Herrmann, H. Obuobi, A. Moisan, and J.A. Lewis: Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci. Rep. 6, 34845 (2016).

    Article  CAS  Google Scholar 

  130. X. Ma, X. Qu, W. Zhu, Y.-S. Li, S. Yuan, H. Zhang, J. Liu, P. Wang, C.S.E. Lai, F. Zanella, G.-S. Feng, F. Sheikh, S. Chien, and S. Chen: Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl. Acad. Sci. U. S. A. 113, 2206 (2016).

    Article  CAS  Google Scholar 

  131. L. Horváth, Y. Umehara, C. Jud, F. Blank, A. Petri-Fink, and B. Rothen-Rutishauser: Engineering an in vitro air-blood barrier by 3D bioprinting. Sci. Rep. 5, 7974 (2015).

    Article  Google Scholar 

  132. A. Faulkner-Jones, C. Fyfe, D.-J. Cornelissen, J. Gardner, J. King, A. Courtney, and W. Shu: Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 7, 44102 (2015).

    Article  Google Scholar 

  133. D.G. Nguyen, J. Funk, J.B. Robbins, C. Crogan-Grundy, S.C. Presnell, T. Singer, and A.B. Roth: Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS ONE 11, e0158674 (2016).

    Article  Google Scholar 

  134. N.S. Bhise, V. Manoharan, S. Massa, A. Tamayol, M. Ghaderi, M. Miscuglio, Q. Lang, Y. Shrike Zhang, S.R. Shin, G. Calzone, N. Annabi, T.D. Shupe, C.E. Bishop, A. Atala, M.R. Dokmeci, and A. Khademhosseini: A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8, 14101 (2016).

    Article  Google Scholar 

  135. R. Gaetani, P.A. Doevendans, C.H.G. Metz, J. Alblas, E. Messina, A. Giacomello, and J.P.G. Sluijter: Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33, 1782 (2012).

    Article  CAS  Google Scholar 

  136. R. Gaetani, D.A.M. Feyen, V. Verhage, R. Slaats, E. Messina, K.L. Christman, A. Giacomello, P.A.F.M. Doevendans, and J.P.G. Sluijter: Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61, 339 (2015).

    Article  CAS  Google Scholar 

  137. Y.S. Zhang, A. Arneri, S. Bersini, S.-R. Shin, K. Zhu, Z. Goli-Malekabadi, J. Aleman, C. Colosi, F. Busignani, V. Dell’Erba, C. Bishop, T. Shupe, D. Demarchi, M. Moretti, M. Rasponi, M.R. Dokmeci, A. Atala, and A. Khademhosseini: Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110, 45 (2016).

    Article  CAS  Google Scholar 

  138. M. Takasato, P.X. Er, H.S. Chiu, B. Maier, G.J. Baillie, C. Ferguson, R.G. Parton, E.J. Wolvetang, M.S. Roost, S.M. Chuva de Sousa Lopes, and M.H. Little: Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564 (2015).

    Article  CAS  Google Scholar 

  139. R. Morizane, A.Q. Lam, B.S. Freedman, S. Kishi, M.T. Valerius, and J.V. Bonventre: Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat. Biotechnol. 33, 1193 (2015).

    Article  CAS  Google Scholar 

  140. B.S. Freedman, C.R. Brooks, A.Q. Lam, H. Fu, R. Morizane, V. Agrawal, A.F. Saad, M.K. Li, M.R. Hughes, R. Vander Werff, D.T. Peters, J. Lu, A. Baccei, A.M. Siedlecki, M.T. Valerius, K. Musunuru, K.M. McNagny, T.I. Steinman, J. Zhou, P.H. Lerou, and J.V. Bonventre: Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6, 8715 (2015).

    Article  CAS  Google Scholar 

  141. M. Huch, C. Dorrell, S.F. Boj, J.H. van Es, V.S.W. Li, M. van de Wetering, T. Sato, K. Hamer, N. Sasaki, M.J. Finegold, A. Haft, R.R.G. Vries, M. Grompe, and H. Clevers: In vitro expansion of single Lgr5+ liver stem cells induced by WNT-driven regeneration. Nature 494, 247 (2013).

    Article  CAS  Google Scholar 

  142. T. Takebe, K. Sekine, M. Enomura, H. Koike, M. Kimura, T. Ogaeri, R.-R. Zhang, Y. Ueno, Y.-W. Zheng, N. Koike, S. Aoyama, Y. Adachi, and H. Taniguchi: Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499, 481 (2013).

    Article  CAS  Google Scholar 

  143. A. Khademhosseini, G. Eng, J. Yeh, P.A. Kucharczyk, R. Langer, G. Vunjak-Novakovic, and M. Radisic: Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed. Microdevices 9, 149 (2007).

    Article  Google Scholar 

  144. R.K. Iyer, J. Chui, and M. Radisic: Spatiotemporal tracking of cells in tissue-engineered cardiac organoids. J. Tissue Eng. Regen. Med. 3, 196 (2009).

    Article  CAS  Google Scholar 

  145. H.K. Voges, R.J. Mills, D.A. Elliott, R.G. Parton, E.R. Porrello, and J.E. Hudson: Development of a human cardiac organoid injury model reveals innate regenerative potential. Development 144, 1118 (2017).

    CAS  Google Scholar 

  146. B.R. Dye, D.R. Hill, M.A. Ferguson, Y.-H. Tsai, M.S. Nagy, R. Dyal, J.M. Wells, C.N. Mayhew, R. Nattiv, O.D. Klein, E.S. White, G.H. Deutsch, J.R. Spence, N. Shroyer, J. Wells, M. Helmrath, D. Kotton, A. Elefanty, E. Stanley, Q. Chen, S. Prabhakar, I. Weissman, and B. Lim: In vitro generation of human pluripotent stem cell derived lung organoids. Elife 4, 327 (2015).

    Article  Google Scholar 

  147. B.R. Dye, P.H. Dedhia, A.J. Miller, M.S. Nagy, E.S. White, L.D. Shea, J.R. Spence, J. Ellis, J. Rossant, Y. Sun, G. Grabowski, S. Finkbeiner, J. Spence, N. Shroyer, J. Wells, M. Helmrath, M. Mense, S. Rowe, J. Engelhardt, Y. Hsu, and J. Rajagopal: A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. Elife 5, 876 (2016).

    Article  Google Scholar 

  148. H. Takahashi, M. Nakayama, T. Shimizu, M. Yamato, and T. Okano: Anisotropic cell sheets for constructing three-dimensional tissue with well-organized cell orientation. Biomaterials 32, 8830 (2011).

    Article  CAS  Google Scholar 

  149. A. Jiao, N.E. Trosper, H.S. Yang, J. Kim, J.H. Tsui, S.D. Frankel, C.E. Murry, and D.-H. Kim: Thermoresponsive nanofabricated substratum for the engineering of three-dimensional tissues with layer-by-layer architectural control. ACS Nano 8, 4430 (2014).

    Article  CAS  Google Scholar 

  150. R. Gupta, N. Van Rooijen, and M.V. Sefton: Fate of endothelialized modular constructs implanted in an omental pouch in nude rats. Tissue Eng. A 15, 2875 (2009).

    Article  CAS  Google Scholar 

  151. S. Rafii, J.M. Butler, and B.-S. Ding: Angiocrine functions of organ-specific endothelial cells. Nature 529, 316 (2016).

    Article  CAS  Google Scholar 

  152. V. Tabar and L. Studer: Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat. Rev. Genet. 15, 82 (2014).

    Article  CAS  Google Scholar 

  153. A.J. Engler, S. Sen, H.L. Sweeney, and D.E. Discher: Matrix elasticity directs stem cell lineage specification. Cell 126, 677 (2006).

    Article  CAS  Google Scholar 

  154. P.S. Briquez, L.E. Clegg, M.M. Martino, F. Mac Gabhann, and J.A. Hubbell: Design principles for therapeutic angiogenic materials. Nat. Rev. Mater. 1, 15006 (2016).

    Article  CAS  Google Scholar 

  155. A. Asti and L. Gioglio: Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int. J. Artif. Organs 37, 187 (2014).

    Article  Google Scholar 

  156. A. Gilpin and Y. Yang: Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res. Int. 2017, 1 (2017).

    Article  Google Scholar 

  157. L.T. Saldin, M.C. Cramer, S.S. Velankar, L.J. White, and S.F. Badylak: Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 49, 1 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of National Institute of Health Grants DP2DK102258, UH2/UH3 TR000504, UH2DK107343, and RO1HL130488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandrycky, C., Phong, K. & Zheng, Y. Tissue engineering toward organ-specific regeneration and disease modeling. MRS Communications 7, 332–347 (2017). https://doi.org/10.1557/mrc.2017.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.58

Navigation