Skip to main content
Log in

Economical Fe-doped Ta2O5 electrocatalyst toward efficient oxygen evolution: a combined experimental and first-principles study

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A non-precious metal catalytic system of Fe-doped Ta2O5 is developed by pulsed laser deposition toward efficient oxygen evolution reaction (OER). The optimal Fe concentration is determined to be 5 at.%for optimized OER activity via a series of electrochemical characterizations. The 5 at.% Fe-doped Ta2O5 nanolayer possesses a low onset overpotential of 0.22 V, an overpotential of 0.38 V at 10 mA/cm2 and a Tafel slope of 54 mV/dec. Comprehensive first-principles calculations attribute the enhanced OER activity to the substitutional FeTa dopants, which generate a new active OER site on surface and simultaneously accelerate electron transfer over oxygens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. M.S. Dresselhaus and I.L. Thomas: Alternative energy technologies. Nature 414, 332 (2001).

    Article  CAS  Google Scholar 

  2. J.H. Montoya, L.C. Seitz, P. Chakthranont, A. Vojvodic, T.F. Jaramillo, and J.K. Norskov: Materials for solar fuels and chemicals. Nat. Mater. 16, 70 (2017).

    Article  Google Scholar 

  3. S. Hoang and P.-X. Gao: Nanowire array structures for photocatalytic energy conversion and utilization: a review of design concepts, assembly and integration, and function enabling. Adv. Energy Mater. 6, 1600683 (2016).

    Article  Google Scholar 

  4. C. Liu, R. Roder, L. Zhang, Z. Ren, H. Chen, Z. Zhang, C. Ronning, and P.-X. Gao: Highly efficient visible-light driven photocatalysts: a case of zinc stannate based nanocrystal assemblies. J. Mater. Chem. A 2, 4157 (2014).

    Article  CAS  Google Scholar 

  5. B. Weng, F. Xu, C. Wang, W. Meng, C.R. Grice, and Y. Yan: A layered Na1−xNiyFe1−yO2 double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy Environ. Sci. 10, 121 (2017).

    Article  CAS  Google Scholar 

  6. X. Xu, F. Song, and X. Hu: A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 7, 12324 (2016).

    Article  CAS  Google Scholar 

  7. Y. Qiu, L. Xin, and W. Li: Electrocatalytic oxygen evolution over supported small amorphous Ni–Fe nanoparticles in alkaline electrolyte. Langmuir 30, 7893 (2014).

    Article  CAS  Google Scholar 

  8. W. Song, Z. Ren, S.-Y. Chen, Y. Meng, S. Biswas, P. Nandi, H.A. Elsen, P.-X. Gao, and S.L. Suib: Ni- and Mn-promoted mesoporous Co3O4: a stable bifunctional catalyst with surface-structure-dependent activity for oxygen reduction reaction and oxygen evolution reaction. ACS Appl. Mater. Interfaces 8, 20802 (2016).

    Article  CAS  Google Scholar 

  9. D. Gao, J. Zhang, T. Wang, W. Xiao, K. Tao, D. Xue, and J. Ding: Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution. J. Mater. Chem. A 4, 17363 (2016).

    Article  CAS  Google Scholar 

  10. X. Huang, M. Leng, W. Xiao, M. Li, J. Ding, T.L. Tan, W.S.V. Lee, and J. Xue: Activating basal planes and S-terminated edges of MoS2 toward more efficient hydrogen evolution. Adv. Funct. Mater. 27, 1604943 (2017).

    Article  Google Scholar 

  11. W. Xiao, P. Liu, J. Zhang, W. Song, Y.P. Feng, D. Gao, and J. Ding: Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution. Adv. Energy Mater. 7, 1602086 (2017).

    Article  Google Scholar 

  12. W. Xiao, X. Huang, W. Song, Y. Yang, T.S. Herng, J.M. Xue, Y.P. Feng, and J. Ding: High catalytic activity of oxygen-induced (200) surface of Ta2O5 nanolayer towards durable oxygen evolution reaction. Nano Energy 25, 60 (2016).

    Article  CAS  Google Scholar 

  13. L. Wang, X. Huang, and J. Xue: Graphitic mesoporous carbon loaded with iron–nickel hydroxide for superior oxygen evolution reactivity. ChemSusChem 9, 1835 (2016).

    Article  CAS  Google Scholar 

  14. Y. Li, M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, G. Hong, B. Zhang, and H. Dai: Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun. 4, 1805 (2013).

    Article  Google Scholar 

  15. S. Dresp, F. Luo, R. Schmack, S. Kuhl, M. Gliech, and P. Strasser: An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy Environ. Sci. 9, 2020 (2016).

    Article  CAS  Google Scholar 

  16. S. Trasatti: Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 29, 1503 (1984).

    Article  CAS  Google Scholar 

  17. S. Cherevko, T. Reier, A.R. Zeradjanin, Z. Pawolek, P. Strasser, and K.J.J. Mayrhofer: Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochem. Commun. 48, 81 (2014).

    Article  CAS  Google Scholar 

  18. Y. Yamashita, M. Tada, M. Kakihana, M. Osada, and K. Yoshida: Synthesis of RuO2-loaded BaTinO2n+1 (n = 1, 2 and 5) using a polymerizable complex method and its photocatalytic activity for the decomposition of water. J. Mater. Chem. 12, 1782 (2002).

    Article  CAS  Google Scholar 

  19. S. Morales and A. Fernandez: Unsupported PtxRuyIrz and PtxIry as bi-functional catalyst for oxygen reduction and oxygen evolution reactions in acid media, for unitized regenerative fuel cell. Int. J. Electrochem. Sci. 8, 12692 (2013).

    CAS  Google Scholar 

  20. M.S. Burke, L.J. Enman, A.S. Batchellor, S. Zou, and S.W. Boettcher: Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27, 7549 (2015).

    Article  CAS  Google Scholar 

  21. R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, and N.M. Markovic: Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550 (2012).

    Article  CAS  Google Scholar 

  22. C.C.L. McCrory, S. Jung, J.C. Peters, and T.F. Jaramillo: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977 (2013).

    Article  CAS  Google Scholar 

  23. M.S. Burke, M.G. Kast, L. Trotochaud, A.M. Smith, and S.W. Boettcher: Cobalt–iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137, 3638 (2015).

    Article  CAS  Google Scholar 

  24. D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M.-J. Cheng, D. Sokaras, T.-C. Weng, R. Alonso-Mori, R.C. Davis, J.R. Bargar, J.K. Nørskov, A. Nilsson, and A.T. Bell: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305 (2015).

    Article  CAS  Google Scholar 

  25. M. Görlin, P. Chernev, J. Ferreira de Araújo, T. Reier, S. Dresp, B. Paul, R. Krähnert, H. Dau, and P. Strasser: Oxygen evolution reaction dynamics, Faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 138, 5603 (2016).

    Article  Google Scholar 

  26. S. Zou, M.S. Burke, M.G. Kast, J. Fan, N. Danilovic, and S.W. Boettcher: Fe (oxy)hydroxide oxygen evolution reaction electrocatalysis: intrinsic activity and the roles of electrical conductivity, substrate, and dissolution. Chem. Mater. 27, 8011 (2015).

    Article  CAS  Google Scholar 

  27. E. Atanassova: Thin RF sputtered and thermal Ta2O5 on Si for high density DRAM application. Microelectron. Reliab. 39, 1185 (1999).

    Article  Google Scholar 

  28. T. Fujii, F.M.F. de Groot, G.A. Sawatzky, F.C. Voogt, T. Hibma, and K. Okada: In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 59, 3195 (1999).

    Article  CAS  Google Scholar 

  29. S.-H. Lee, J. Kim, S.-J. Kim, S. Kim, and G.-S. Park: Hidden structural order in orthorhombic Ta2O5. Phys. Rev. Lett. 110, 235502 (2013).

    Article  Google Scholar 

  30. I.C. Man, H.-Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Nørskov, and J. Rossmeisl: Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

A. L. would like to acknowledge the financial support from Natural Science Foundation of Hubei Province (Grant no. 2013CFC104). J. D. is grateful for the financial support from the National Research Foundation (NRF-CRP16-2015-01) and NUS Strategic Fund (R261-509-001-646). W. X. performs the first-principles calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ding.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2017.55

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Chen, Z., Wei, X. et al. Economical Fe-doped Ta2O5 electrocatalyst toward efficient oxygen evolution: a combined experimental and first-principles study. MRS Communications 7, 563–569 (2017). https://doi.org/10.1557/mrc.2017.55

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.55

Navigation