Skip to main content
Log in

Spray pyrolysis and electrochemical performance of Na0.44MnO2 for sodium-ion battery cathodes

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this study, we investigate spray pyrolysis as an approach to synthesis of tunnel structure sodium manganese oxide, as it is a cost-effective and scalable technology. The powders synthesized with Na/Mn ratio of 0.50 displayed a pure tunnel structure, and demonstrated the best electrochemical performance, with a discharge capacity of 115 mAh/g. The material also showed good cycleability and rate capability. Noticeable decay in performance was seen in materials with Na/Mn ratios other than 0.50, indicating that this material is sensitive to minor compositional deviations. This study has demonstrated that spray pyrolysis is a promising synthesis method for this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Table I
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. B.L. Ellis and L.F. Nazar: Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 16, 168 (2012).

    Article  CAS  Google Scholar 

  2. V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, and T. Rojo: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884 (2012).

    Article  CAS  Google Scholar 

  3. K. Kubota, N. Yabuuchi, H. Yoshida, M. Dahbi, and S. Komaba: Layered oxides as positive electrode materials for Na-ion batteries. MRS Bull. 39, 416 (2014).

    Article  CAS  Google Scholar 

  4. M.D. Slater, D. Kim, E. Lee, and C.S. Johnson: Sodium-ion batteries. Adv. Funct. Mater. 23, 947 (2013).

    Article  CAS  Google Scholar 

  5. F. Sauvage, L. Laffont, J.M. Tarascon, and E. Baudrin: Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. Inorg. Chem. 46, 3289 (2007).

    Article  CAS  Google Scholar 

  6. E. Hosono, T. Saito, J. Hoshino, M. Okubo, Y. Saito, D. Nishio-Hamane, T. Kudo, and H. Zhou: High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode. J. Power Sources 217, 43 (2012).

    Article  CAS  Google Scholar 

  7. L.W. Zhao, J.F. Ni, H.B. Wang and L.J. Gao: Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries. RSC Adv. 3, 6650 (2013).

    Article  CAS  Google Scholar 

  8. Y. Wang, J. Liu, B. Lee, R. Qiao, Z. Yang, S. Xu, X. Yu, L. Gu, Y.-S. Hu, W. Yang, K. Kang, H. Li, X.-Q. Yang, L. Chen, and X. Huang: Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015).

    Article  CAS  Google Scholar 

  9. F. Bi, Z. Xuan, and W. Yaping: High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries. J. Power Sources 310, 102 (2016).

    Article  Google Scholar 

  10. S.L. Bai, J.L. Song, Y.H. Wen, J. Cheng, G.P. Cao, Y.S. Yang, and D.Q. Li: Effects of zinc and manganese ions in aqueous electrolytes on structure and electrochemical performance of Na0.44MnO2 cathode material. RSC Adv. 6, 40793 (2016).

    Article  CAS  Google Scholar 

  11. M.W. Xu, Y.B. Niu, C.J. Chen, J. Song, S.J. Bao, and C.M. Li: Synthesis and application of ultra-long Na0.44MnO2 submicron slabs as a cathode material for Na-ion batteries. RSC Adv. 4, 38140 (2014).

    Article  CAS  Google Scholar 

  12. M. Lengyel, D. Elhassid, G. Atlas, W.T. Moller, and R.L. Axelbaum: Development of a scalable spray pyrolysis process for the production of non-hollow battery materials. J. Power Sources 266, 175 (2014).

    Article  CAS  Google Scholar 

  13. T. Ogihara, T. Kodera, K. Myoujin, and S. Motohira: Preparation and electrochemical properties of cathode materials for lithium ion battery by aerosol process. Mater. Sci. Eng. B 161, 109 (2009).

    Article  CAS  Google Scholar 

  14. Y.J. Hong, J.H. Kim, M.H. Kim, and Y.C. Kang: Electrochemical properties of 0.3Li2MnO30.7LiNi0.5Mn0.5O2 composite cathode powders prepared by large-scale spray pyrolysis. Mater. Res. Bull. 47, 2022 (2012).

    Article  CAS  Google Scholar 

  15. D.S. Jung, T.H. Hwang, S.B. Park, and J.W. Choi: Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Lett. 13, 2092 (2013).

    Article  CAS  Google Scholar 

  16. Z. Sadeghian: Large-scale production of multi-walled carbon nanotubes by low-cost spray pyrolysis of hexane. New Carbon Mater. 24, 33 (2009).

    Article  CAS  Google Scholar 

  17. K.Y. Jung, J.H. Lee, H.Y. Koo, Y.C. Kang, and S. Bin Park: Preparation of solid nickel nanoparticles by large-scale spray pyrolysis of Ni(NO3)26H2O precursor: effect of temperature and nickel acetate on the particle morphology. Mater. Sci. Eng. B 137, 10 (2007).

    Article  CAS  Google Scholar 

  18. K. Okuyama, M. Abdullah, I.W. Lenggoro, and F. Iskandar: Preparation of functional nanostructured particles by spray drying. Adv. Powder Technol. 17, 587 (2006).

    Article  CAS  Google Scholar 

  19. M. Lengyel, G. Atlas, D. Elhassid, P.Y. Luo, X. Zhang, I. Belharouak, and R.L. Axelbaum: Effects of synthesis conditions on the physical and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 prepared by spray pyrolysis. J. Power Sources 262, 286 (2014).

    Article  CAS  Google Scholar 

  20. Y.U. Jeong and A. Manthiram: Synthesis of NaxMnO2+d by a reduction of aqueous sodium permanganate with sodium iodide. J. Solid State Chem. 156, 331 (2001).

    Article  CAS  Google Scholar 

  21. M. Lengyel, K-Y. Shen, D.M. Lanigan, J.M. Martin, X. Zhang, and R.L. Axelbaum: Trace level doping of lithium-rich cathode materials. J. Mater. Chem. A 4, 3538 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Pratim Biswas for the use of his glovebox. The authors are grateful to Dr. Naoaki Yabuuchi from Tokyo Denki University for his helpful discussions on sodium-ion cell fabricating. The electron microscopy facility used in this work was supported by the Nano Research Facility (NRF) at Washington University in St. Louis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Axelbaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, KY., Lengyel, M., Wang, L. et al. Spray pyrolysis and electrochemical performance of Na0.44MnO2 for sodium-ion battery cathodes. MRS Communications 7, 74–77 (2017). https://doi.org/10.1557/mrc.2017.4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.4

Navigation