Skip to main content

Advertisement

Log in

Improvement of power–energy characteristic of the lithium-ion capacitor by structure modification of the graphite anode

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Lithium-ion capacitors utilizing graphite (G) and reduced graphite oxide (RGO) as negative electrode materials were investigated. Various reduction methods of graphite oxide were applied to compare properties of modified materials. The hybrid cells showed the energy density at mild current regimes of ca. 70–100 Wh/kg. However, at higher rates, only the capacitor with chemically RGO maintained this tendency. Moreover, the system demonstrated the energy density of 34 Wh/kg at a power density of 26 kW/kg. The electrochemical measurements were conducted in three-electrode systems to record responses of positive and negative electrodes separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Figure 1
Figure 2
Figure 3
Table II
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. D. Cericola and R. Kötz: Hybridization of rechargeable batteries and electrochemical capacitors: principle and limits. Electrochim. Acta 72, 1 (2012).

    Article  CAS  Google Scholar 

  2. S.R. Sivakkumar and A.G. Pandolfo: Carbon nanotubes/amorphous carbon composites as high-power negative electrodes in lithium ion capacitors. J. Appl. Electrochem. 44, 105 (2014).

    Article  CAS  Google Scholar 

  3. X. Wang and G. Shen: Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical super-capacitors with ultrahigh energy density. Nano Energy 15, 104 (2015).

    Article  Google Scholar 

  4. G.G. Amatucci, F. Badway, A. Du Pasquier, and T. Zheng: An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148, A930 (2001).

    Article  CAS  Google Scholar 

  5. W.J. Cao, J. Shih, J.P. Zheng, and T. Doung: Development and characterization of Li-ion capacitor pouch cells. J. Power Sources 257, 388 (2014).

    Article  CAS  Google Scholar 

  6. X. Sun, X. Zhang, H. Zhang, N. Xu, K. Wang, and Y. Ma: High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes. J. Power Sources 270, 318 (2014).

    Article  CAS  Google Scholar 

  7. J. Zhang, Z. Shi, J. Wang, and J. Shi: Composite of mesocarbon microbe-ads/hard carbon as anode material for lithium ion capacitor with high electrochemical performance. J. Electroanal. Chem. 747, 20 (2015).

    Article  CAS  Google Scholar 

  8. N. Ogihara, Y. Igarashi, A. Kamakura, K. Naoi, Y. Kusachi, and K. Utsugi: Disordered carbon negative electrode for electrochemical capacitors and high-rate batteries. Electrochim. Acta 52, 1713 (2006).

    Article  CAS  Google Scholar 

  9. V. Khomenco, E. Raymundo-Piñero, and F. Béguin: High-energy density graphite/AC capacitor in organic electrolyte. J. Power Sources 177, 643 (2008).

    Article  Google Scholar 

  10. W.J. Cao and J.P. Zheng: Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes. J. Power Sources 213, 180 (2012).

    Article  CAS  Google Scholar 

  11. M. Schroeder, M. Winter, S. Passerini, and A. Balducci: On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material. J. Power Sources 238, 388 (2013).

    Article  CAS  Google Scholar 

  12. K. Naoi, S. Ishimoto, J. Miyamoto, and W. Naoi: Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ. Sci. 5, 9363 (2012).

    Article  CAS  Google Scholar 

  13. C. Decaux, G. Lota, E. Raymundo-Pinero, E. Frąckowiak, and F. Béguin: Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte. Electrochim. Acta 86, 282 (2012).

    Article  CAS  Google Scholar 

  14. W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  15. M. Galinski and I. Acznik: Study of a graphene-like anode material in N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid for Li-ion batteries. J. Power Sources 216, 5 (2012).

    Article  CAS  Google Scholar 

  16. M.S. Dresselhaus, A. Jorio, and R. Saito: Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys. 1, 89 (2010).

    Article  CAS  Google Scholar 

  17. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  18. J. Jagiello and J.P. Olivier: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70 (2013).

    Article  CAS  Google Scholar 

  19. J. Jagiello and J.P. Olivier: Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 19, 777 (2013).

    Article  CAS  Google Scholar 

  20. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).

    Article  CAS  Google Scholar 

  21. G. Srinivas, Y. Zhu, R. Piner, N. Skipper, M. Ellerby, and R. Ruoff: Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48, 630 (2010).

    Article  CAS  Google Scholar 

  22. S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D.L. Wood III: The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Acznik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acznik, I., Lota, K. & Sierczyńska, A. Improvement of power–energy characteristic of the lithium-ion capacitor by structure modification of the graphite anode. MRS Communications 7, 245–252 (2017). https://doi.org/10.1557/mrc.2017.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.31

Navigation