Skip to main content
Log in

Monitoring the adaptive cell response to hyperosmotic stress by organic devices

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Cellular activity upon osmotic stress is related to the occurrence of several disease conditions. The real-time monitoring of the cell response to this kind of stress can give insight into the comprehension of mechanisms involved in cellular shrinkage. Currently the dynamics of the osmotic stress is studied using dedicated and tricky methodologies, not suited to the in vivo testing. We show that a disposable electronic device is very effective for studying the early stage of the osmotic stress induced on human lung adenocarcinoma cells, A549, by a hyper-osmotic environment. Our findings corroborate the experimental results obtained by a standard complementary analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. T.K. Das and S. Prusty: Review on conducting polymers and their applications. Polym. Plast. Technol. Eng. 51, 1487 (2012).

    Article  CAS  Google Scholar 

  2. R.M. Owens and G.G. Malliaras: Organic Electronics at the Interface with Biology. MRS Bull. 35, 449 (2010).

    Article  CAS  Google Scholar 

  3. S. Nambiar and J.T.W. Yeow: Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 26, 1825 (2011).

    Article  CAS  Google Scholar 

  4. I. Cesarino, H.V. Galesco, F.C. Moraes, M.R.V. Lanza, and S.A.S. Machado: Biosensor based on electrocodeposition of carbon nanotubes/polypyrrole/laccase for neurotransmitter detection. Electroanalysis 25, 394 (2013).

    Article  CAS  Google Scholar 

  5. G. Tarabella, A. Pezzella, A. Romeo, P. D’Angelo, N. Coppedè, M. Calicchio, M. D’Ischia, R. Mosca, and S. Iannotta: Irreversible evolution of eumelanin redox states detected by an organic electrochemical transistor: en route to bioelectronics and biosensing. J. Mater. Chem. B 1, 3843 (2013).

    Article  CAS  Google Scholar 

  6. L.H. Jimison, S.A. Tria, D. Khodagholy, M. Gurfinkel, E. Lanzarini, A. Hama, G.G. Malliaras, and R.M. Owens: Measurement of barrier tissue integrity with an organic electrochemical transistor. Adv. Mater. 24, 5919 (2012).

    Article  CAS  Google Scholar 

  7. D. Svirskis, J. Travas-Sejdic, A. Rodgers, and S. Garg: Electrochemically controlled drug delivery based on intrinsically conducting polymers. J. Control. Release 146, 6 (2010).

    Article  CAS  Google Scholar 

  8. F. Cicoira and C. Santato: Organic Electronics: Emerging Concepts and Technologies, 1st ed. (Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013), pp. 69–89.

    Book  Google Scholar 

  9. P.-O. Svensson, D. Nilsson, R. Forchheimer, and M. Berggren: A sensor circuit using reference-based conductance switching in organic electrochemical transistors. Appl. Phys. Lett. 93, 203301 (2008).

    Article  Google Scholar 

  10. G. Tarabella, A.G. Balducci, N. Coppedè, S. Marasso, P. D’Angelo, S. Barbieri, M. Cocuzza, P. Colombo, F. Sonvico, R. Mosca, and S. Iannotta: Liposome sensing and monitoring by organic electrochemical transistors integrated in microfluidics. Biochim. Biophys. Acta—Gen. Subj. 1830, 4374 (2013).

    Article  CAS  Google Scholar 

  11. P. Lin, X. Luo, I.M. Hsing, and F. Yan: Organic electrochemical transistors integrated in flexible microfluidic systems and used for label-free DNA sensing. Adv. Mater. 23, 4035 (2011).

    Article  CAS  Google Scholar 

  12. R.-X. He, M. Zhang, F. Tan, P.H.M. Leung, X.-Z. Zhao, H.L.W. Chan, M. Yang, and F. Yan: Detection of bacteria with organic electrochemical transistors. J. Mater. Chem. 22, 22072 (2012).

    Article  CAS  Google Scholar 

  13. J. Liao, S. Lin, K. Liu, Y. Yang, R. Zhang, W. Du, and X. Li: Organic electrochemical transistor based biosensor for detecting marine diatoms in seawater medium. Sens. Actuators B, Chem. 203, 677 (2014).

    Article  CAS  Google Scholar 

  14. G. Tarabella, P. D’Angelo, A. Cifarelli, A. Dimonte, A. Romeo, T. Berzina, V. Erokhin, and S. Iannotta: A hybrid living/organic electrochemical transistor based on the Physarum polycephalum cell endowed with both sensing and memristive properties. Chem. Sci. 6, 2859 (2015).

    Article  CAS  Google Scholar 

  15. A. Romeo, A. Dimonte, G. Tarabella, P. D’Angelo, V. Erokhin, and S. Iannotta: A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor. APL Mater. 3, 014909 (2015).

    Article  Google Scholar 

  16. C. Yao, C. Xie, P. Lin, F. Yan, P. Huang, and I.M. Hsing: Organic electrochemical transistor array for recording transepithelial ion transport of human airway epithelial cells. Adv. Mater. 25, 6575 (2013).

    Article  CAS  Google Scholar 

  17. P. Lin, F. Yan, J. Yu, H.L.W. Chan, and M. Yang: The application of organic electrochemical transistors in cell-based biosensors. Adv. Mater. 22, 3655 (2010).

    Article  CAS  Google Scholar 

  18. A. Romeo, G. Tarabella, P. D’Angelo, C. Caffarra, D. Cretella, R. Alfieri, P. G. Petronini, and S. Iannotta: Drug-induced cellular death dynamics monitored by a highly sensitive organic electrochemical system. Biosens. Bioelectron. 68, 791 (2015).

    Article  CAS  Google Scholar 

  19. J.G. Verbalis: Disorders of body water homeostasis. Best Pract. Res. Clin. Endocrinol. Metab. 17, 471 (2003).

    Article  CAS  Google Scholar 

  20. H. Kim, J.Y. Seo, and K.H. Kim: Effects of mannitol and dimethylthiourea on Helicobacter pylori-induced IL-8 production in gastric epithelial cells. Pharmacology 59, 201 (1999).

    Article  CAS  Google Scholar 

  21. J.G.S. Gong Wei, Q. Huang, J. Li, Z. Liu, H. You, and Y. Chen: Taurine attenuates liver injury by downregulating phosphorylated p38 MAPK of Kupffer cells in rats with severe acute pancreatitis. Inflammation 35, 690 (2012).

    Article  Google Scholar 

  22. W. Neuhofer: Role of NFAT5 in inflammatory disorders associated with osmotic stress. Curr. Genomics 11, 584 (2010).

    Article  CAS  Google Scholar 

  23. G.M. Lee: Measurement of volume injected into individual cells by quantitative fluorescence microscopy. J. Cell Sci. 94, 443 (1989).

    Google Scholar 

  24. W. Crowe, J. Altamirano, L. Huerto, and F. Alvarez-Leefmans: Volume changes in single N1E-115 neuroblastoma cells measured with a fluorescent probe. Neuroscience 69, 283 (1995).

    Article  CAS  Google Scholar 

  25. H.K. Kimelberg, E.R. O’Connor, P. Sankar, and C. Keese: Methods for determination of cell volume in tissue culture. Can. J. Physiol. Pharmacol. 70(Suppl.), S323 (1992).

    Article  CAS  Google Scholar 

  26. F. GUILAK: Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections. J. Microsc. 173, 245 (1994).

    Article  CAS  Google Scholar 

  27. Y.E. Korchev, M. Milovanovic, C.L. Bashford, D.C. Bennett, E. V. Sviderskaya, I. Vodyanoy, and M.J. Lab: Specialized scanning ion-conductance microscope for imaging of living cells. J. Microsc. 188 (Pt 1), 17 (1997).

    Article  CAS  Google Scholar 

  28. S. Hamann, J.F. Kiilgaard, T. Litman, F.J. Alvarez-Leefmans, B.R. Winther, and T. Zeuthen: Measurement of cell volume changes by fluorescence self-quenching. J. Fluoresc. 12, 139 (2002).

    Article  CAS  Google Scholar 

  29. A.S.G. Curtis: Cell reactions with biomaterials: the microscopies. Eur. Cells Mater. 1, 59 (2001).

    Article  CAS  Google Scholar 

  30. S. Ouyang, Y. Xie, D. Zhu, X. Xu, D. Wang, T. Tan, and H.H. Fong: Photolithographic patterning of PEDOT:PSS with a silver interlayer and its application in organic light emitting diodes. Org. Electron. 15, 1822 (2014).

    Article  CAS  Google Scholar 

  31. A. Katsen-Globa, N. Puetz, M.M. Gepp, J.C. Neubauer, and H. Zimmermann: Study of SEM preparation artefacts with correlative microscopy: cell shrinkage of adherent cells by HMDS-drying. Scanning 38, 625 (2016).

    Article  CAS  Google Scholar 

  32. S. La Monica, C. Caffarra, F. Saccani, E. Galvani, M. Galetti, C. Fumarola, M. Bonelli, A. Cavazzoni, D. Cretella, R. Sirangelo, R. Gatti, M. Tiseo, A. Ardizzoni, E. Giovannetti, P.G. Petronini, and R.R. Alfieri: Gefitinib inhibits invasive phenotype and epithelial-mesenchymal transition in drug-resistant NSCLC cells with MET amplification. PLoS ONE 8, e78656 (2013).

    Article  Google Scholar 

  33. T.R. Kiehl, D. Shen, S.F. Khattak, Z. Jian Li, and S.T. Sharfstein: Observations of cell size dynamics under osmotic stress. Cytometry A 79 A, 560 (2011).

    Article  Google Scholar 

  34. D. Khodagholy, J. Rivnay, M. Sessolo, M. Gurfinkel, P. Leleux, L. H. Jimison, E. Stavrinidou, T. Herve, S. Sanaur, R.M. Owens, and G. G. Malliaras: High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the N-Chem project within the CNR–NANOMAX Flagship program, by the Provincia Autonoma di Trento, call “Grandi progetti 2012”, project “Madelena” and by “NANONOPAIN-Theras” project co-funded by POR-FESR 2014-2020, Regione Emilia Romagna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale D’Angelo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Angelo, P., Tarabella, G., Romeo, A. et al. Monitoring the adaptive cell response to hyperosmotic stress by organic devices. MRS Communications 7, 229–235 (2017). https://doi.org/10.1557/mrc.2017.29

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.29

Navigation