Skip to main content

Advertisement

Log in

Electronic structure of β-NiOOH with hydrogen vacancies and implications for energy conversion applications

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Nickel oxide-based materials have attracted significant interest for a variety of energy conversion applications although many of their structures remain unresolved. In this study, Density Functional Theory+U (DFT+U) and hybrid DFT calculations are used to analyze the properties of crystalline nickel oxyhydroxide (β-NiOOH) with hydrogen (H) vacancies. Hydrogen vacancies are found to lower the band gap without creating states inside the band gap. Inter-layer crossing is a possible transport pathway, while intra-layer transport is inhibited. Bulk modulus is not influenced by H vacancies in the crystal. β-NiOOH with H vacancies exhibits good electronic properties, essential for solid electrolytes and anodes in solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Table I
Table II
Figure 2.
Figure 3.
Figure 4.
Table III
Figure 5.
Table IV
Figure 6.

Similar content being viewed by others

References

  1. M.L. Bustamante, B. Hubler, G. Gaustad, and C.W. Babbitt: Life cycle assessment of jointly produced solar energy materials: challenges and best practices. Sol. Energy Mater. Sol. Cells 156, 11 (2016).

    Article  CAS  Google Scholar 

  2. K. Sivula and R. van de Krol: Semiconducting materials for photoelectro-chemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    Article  CAS  Google Scholar 

  3. M.C. Toroker and E.A. Carter: Transition metal oxide alloys as potential solar energy conversion materials. J. Mater. Chem. A 1, 2474 (2013).

    Article  CAS  Google Scholar 

  4. A. Kudo and Y. Miseki: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).

    Article  CAS  Google Scholar 

  5. L. Trotochaud, J.K. Ranney, K.N. Williams, and S.W. Boettcher: Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253 (2012).

    Article  CAS  Google Scholar 

  6. F. Bardé, M.R. Palacín, B. Beaudoin, and J.M. Tarascon: Ozonation: a unique route to prepare nickel oxyhydroxides. Synthesis optimization and reaction mechanism study. Chem. Mater. 17, 470 (2005).

    Google Scholar 

  7. L. Trotochaud, S.L. Young, J.K. Ranney, and S.W. Boettcher: Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744 (2014).

    Article  CAS  Google Scholar 

  8. V. Fidelsky, V. Butera, J. Zaffran, and M.C. Toroker: Three fundamental questions on one of our best water oxidation catalysts: a critical perspective. Theor. Chem. Acc. 135, 162 (2016).

    Article  Google Scholar 

  9. A.J. Tkalych, K. Yu, and E.A. Carter: Structural and electronic features of β-Ni(OH)2 and β-NiOOH from first principles. J. Phys. Chem. C 119, 24315 (2015).

    Article  CAS  Google Scholar 

  10. J.C. Conesa: Electronic structure of the (undoped and Fe-doped) NiOOH O2 evolution electrocatalyst. J. Phys. Chem. C 120, 18999 (2016).

    Article  CAS  Google Scholar 

  11. A. Van der Ven, D. Morgan, Y.S. Meng, and G. Ceder: Phase stability of nickel hydroxides and oxyhydroxides. J. Electrochem. Soc. 153, A210 (2006).

    Article  Google Scholar 

  12. A. Delahaye-Vidal, B. Beaudoin, N. Sac-Epée, K. Tekaia-Elhsissen, A. Audemer, and M. Figlarz: Structural and textural investigations of the nickel hydroxide electrode. Solid State Ion. 84, 239 (1996).

    Article  CAS  Google Scholar 

  13. V. Fidelsky and M. Caspary Toroker: Enhanced water oxidation catalysis of nickel oxyhydroxide through the addition of vacancies. J. Phys. Chem. C 120, 25405 (2016).

    Article  CAS  Google Scholar 

  14. O. Diaz-Morales, D. Ferrus-Suspedra, and M.T.M. Koper: The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 7, 2639 (2016).

    Article  CAS  Google Scholar 

  15. H.V. Keer: Principles of the Solid State (J). Wiley & Sons, New York, 1993).

    Google Scholar 

  16. H.L. Tuller: Defect engineering: design tools for solid state electrochemical devices. Electrochim. Acta 48, 2879 (2003).

    Article  CAS  Google Scholar 

  17. G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  18. G. Kresse and J. Furthmüller: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  19. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  20. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A. P. Sutton: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998).

    Article  CAS  Google Scholar 

  21. J.P. Perdew, M. Ernzerhof, and K. Burke: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982 (1996).

    Article  CAS  Google Scholar 

  22. Y.-F. Li and A. Selloni: Mosaic texture and double c-axis periodicity of β-NiOOH: insights from first-principles and genetic algorithm calculations. J. Phys. Chem. Lett. 5, 3981 (2014).

    Article  CAS  Google Scholar 

  23. Y.-F. Li and A. Selloni: Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx. ACS Catal. 4, 1148 (2014).

    Article  CAS  Google Scholar 

  24. J. Zaffran and M. Caspary Toroker: Benchmarking density functional theory based methods to model NiOOH material properties: Hubbard and van der Waals corrections versus hybrid functionals. J. Chem. Theory Comput. 12, 3807 (2016).

    Article  CAS  Google Scholar 

  25. P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  26. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  27. N. Fernandez, Y. Ferro, and D. Kato: Hydrogen diffusion and vacancies formation in tungsten: density functional theory calculations and statistical models. Acta Mater. 94, 307 (2015).

    Article  CAS  Google Scholar 

  28. M.C. Toroker and E.A. Carter: Strategies to suppress cation vacancies in metal oxide alloys: consequences for solar energy conversion. J. Mater. Sci. 50, 5715 (2015).

    Article  CAS  Google Scholar 

  29. J. Rossmeisl, A. Logadottir, and J.K. Nørskov: Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178 (2005).

    Article  CAS  Google Scholar 

  30. M.S. Burke, S. Zou, L.J. Enman, J.E. Kellon, C.A. Gabor, E. Pledger, and S.W. Boettcher: Revised oxygen evolution reaction activity trends for first-row transition-metal (oxy)hydroxides in alkaline media. J. Phys. Chem. Lett. 6, 3737 (2015).

    Article  CAS  Google Scholar 

  31. F. Fuchs and F. Bechstedt: Indium-oxide polymorphs from first principles: quasiparticle electronic states. Phys. Rev. B 77, 155107 (2008).

    Article  Google Scholar 

  32. C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt: Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO. Phys. Rev. B 79, 235114 (2009).

    Article  Google Scholar 

  33. L.Y. Isseroff and E.A. Carter: Importance of reference Hamiltonians containing exact exchange for accurate one-shot GW calculations of Cu2O. Phys. Rev. B 85, 235142 (2012).

    Article  Google Scholar 

  34. V. Fidelsky and M. Caspary Toroker: Engineering band edge positions of nickel oxyhydroxide through facet selection. J. Phys. Chem. C 120, 8104 (2016).

    Article  CAS  Google Scholar 

  35. N. Yatom and M. Toroker: Hazardous doping for photo-electrochemical conversion: the case of Nb-doped Fe2O3 from first principles. Molecules 20, 19900 (2015).

    Article  CAS  Google Scholar 

  36. O. Neufeld and M.C. Toroker: Platinum-doped α-Fe2O3 for enhanced water splitting efficiency: a DFT+U study. J. Phys. Chem. C 119, 5836 (2015).

    Article  CAS  Google Scholar 

  37. P. Liao, M.C. Toroker, and E.A. Carter: Electron transport in pure and doped hematite. Nano Lett. 11, 1775 (2011).

    Article  CAS  Google Scholar 

  38. A.B. Muñoz-García, A.M. Ritzmann, M. Pavone, J.A. Keith, and E. A. Carter: Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics. Acc. Chem. Res. 47, 3340 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Nancy and Stephen Grand Technion Energy Program, the I-CORE Program of the Planning and Budgeting Committee, and The Israel Science Foundation (Grant no. 152/11), and the Pazy Foundation. This work was supported by the post LinkSCEEM-2 project, funded by the European Commission under the 7th Framework Programme through Capacities Research Infrastructure, INFRA-2010-1.2.3 Virtual Research Communities, Combination of Collaborative Project and Coordination and Support Actions (CP-CSA) under grant agreement no RI-261600. V.F. acknowledges scholarship by the Jacob Isler Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maytal Caspary Toroker.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fidelsky, V., Furman, D., Khodorkovsky, Y. et al. Electronic structure of β-NiOOH with hydrogen vacancies and implications for energy conversion applications. MRS Communications 7, 206–213 (2017). https://doi.org/10.1557/mrc.2017.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.26

Navigation