Skip to main content
Log in

Tellurium-doped lanthanum manganite as catalysts for the oxygen reduction reaction

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The effect of tellurium (Te) doping on the electrocatalytic activity of La1-xTexMnO3 toward the oxygen reduction reaction is investigated for the first time. La1-xTexMnO3 with x-values up 23% were synthesized from a single ionic liquid-based precursor, yielding nanoparticles with mean diameter in the range of 40–68 nm and rhombohedral unit cell. Electrochemical studies were performed on carbon-supported particles in alkaline environment. The composition dependence activity is discussed in terms of surface density of Mn sites and changes in the effective Mn oxidation state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  1. F. Cheng and J. Chen: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172 (2012).

    Article  CAS  Google Scholar 

  2. D.U. Lee, P. Xu, Z.P. Cano, A.G. Kashkooli, M.G. Park, and Z. Chen: Recent progress and perspectives on bi-functional oxygen electrocata-lysts for advanced rechargeable metal-air batteries. J. Mater. Chem. A 4, 7107 (2016).

    Article  CAS  Google Scholar 

  3. L. Li, X. Feng, S. Chen, F. Shi, K. Xiong, W. Ding, X. Qi, J. Hu, Z. Wei, L-J. Wan, and M. Xia: Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2. ACS Catal. 5, 4825 (2015).

    Article  CAS  Google Scholar 

  4. W.G. Hardin, J.T. Mefford, D.A. Slanac, B.B. Patel, X. Wang, S. Dai, X. Zhao, R.S. Ruoff, K.P. Johnston, and K.J. Stevenson: Tuning the elec-trocatalytic activity of perovskites through active site variation and support interactions. Chem. Mater. 26, 3368 (2014).

    Article  CAS  Google Scholar 

  5. J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546 (2011).

    Article  CAS  Google Scholar 

  6. K.A. Stoerzinger, M. Risch, B. Han, and Y. Shao-Horn: Recent insights into manganese oxides in catalyzing oxygen reduction kinetics. ACS Catal. 5, 6021 (2015).

    Article  CAS  Google Scholar 

  7. V. Celorrio, L. Calvillo, E. Dann, G. Granozzi, A. Aguadero, D. Kramer, A. E. Russell, and D.J. Fermin: Oxygen reduction reaction at LaxCa1-xMnO3 nanostructures: interplay between A-site segregation and B-site valency. Catal. Sci. Tech. 6, 7231 (2016).

    Article  CAS  Google Scholar 

  8. X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, T.S.A. Hor, Y. Zong, and Z. Liu: Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal. 5, 4643 (2015).

    Article  CAS  Google Scholar 

  9. F. Calle-Vallejo, N.G. Inoglu, H-Y. Su, J.I. Martinez, I.C. Man, M.T. M. Koper, J.R. Kitchin, and J. Rossmeisl: Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem. Sci. 4, 1245 (2013).

    Article  CAS  Google Scholar 

  10. W. Lee, J.W. Han, Y. Chen, Z. Cai, and B. Yildiz: Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 7909 (2013).

    Article  CAS  Google Scholar 

  11. V. Celorrio, E. Dann, L. Calvillo, D.J. Morgan, S.R. Hall, and D.J. Fermin: Oxygen reduction at carbon-supported lanthanides: the role of the B-site. ChemElectroChem 3, 283 (2016).

    Article  CAS  Google Scholar 

  12. A.S. Ryabova, F.S. Napolskiy, T. Poux, S.Y. Istomin, A. Bonnefont, D.M. Antipin, A.Y. Baranchikov, E.E. Levin, A.M. Abakumov, G. Kéranguéven, E.V. Antipov, G.A. Tsirlina, and E.R. Savinova: Rationalizing the influence of the Mn(IV)/Mn(III) red-ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction. Electrochim. Acta 187, 161 (2016).

    Article  CAS  Google Scholar 

  13. W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich, and Y. Shao-Horn: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404 (2015).

    Article  CAS  Google Scholar 

  14. J. Yang, W.H. Song, Y.Q. Ma, R.L. Zhang, and Y.P. Sun: Determination of oxygen stoichiometry in the mixed-valent manganites. J. Magn. Magn. Mater. 285, 417 (2005).

    Article  CAS  Google Scholar 

  15. D.C. Green, S. Glatzel, A.M. Collins, A.J. Patil, and S.R. Hall: A new general synthetic strategy for phase-pure complex functional materials. Adv. Mater. 24, 5767 (2012).

    Article  CAS  Google Scholar 

  16. J. Rodríguez-Carvajal: Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B: Condens Matter 192, 55 (1993).

    Article  Google Scholar 

  17. H. Rietveld: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65 (1969).

    Article  CAS  Google Scholar 

  18. J. Yang, W.H. Song, Y.Q. Ma, R.L. Zhang, B.C. Zhao, Z.G. Sheng, G.H. Zheng, J.M. Dai, and Y.P. Sun: Insulator–metal transition and the magnetic phase diagram of La1-xTexMnO3 (0.1 ≤ x ≤ 0.6). Mater. Chem. Phys. 94, 62 (2005).

    Article  CAS  Google Scholar 

  19. G.H. Zheng, Y.P. Sun, X.B. Zhu, and W.H. Song: Transport, magnetic, internal friction, and Young’s modulus in the Y-doped manganites La0.9-xYxTe0.1MnO3. J. Solid State Chem. 179, 1394 (2006).

    Article  CAS  Google Scholar 

  20. M.F. Sunding, K. Hadidi, S. Diplas, O.M. Løvvik, T.E. Norby, and A. E. Gunnæs: XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J. Electron. Spectrosc. Relat. Phenom. 184, 399 (2011).

    Article  CAS  Google Scholar 

  21. M.C. Álvarez-Galván, V.A. de la Peña O’Shea, G. Arzamendi, B. Pawelec, L. M. Gandía, and J.L.G. Fierro: Methyl ethyl ketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites. Appl. Catal. B 92, 445 (2009).

    Article  Google Scholar 

  22. K. Bolwin, W. Schnurnberger, and G. Schiller: Influence of valence band states on the core hole screening in lanthanide perovskite compounds. Z. Phys. B 72, 203 (1988).

    Article  CAS  Google Scholar 

  23. A.B. Christie, I. Sutherland, and J.M. Walls: Studies of the composition, ion-induced reduction and preferential sputtering of anodic oxide films on Hg0.8Cd0.2Te by XPS. Surf. Sci. 135, 225 (1983).

    Article  CAS  Google Scholar 

  24. R.F.C. Farrow, P.N.J. Dennis, H.E. Bishop, N.R. Smart, and J.T. M. Wotherspoon: The composition of anodic oxide films on Hg0.8Cd0.2Te. Thin Solid Films 88, 87 (1982).

    Article  CAS  Google Scholar 

  25. V. Di Castro and G. Polzonetti: XPS study of MnO oxidation. J. Electron. Spectrosc. Relat. Phenom. 48, 117 (1989).

    Article  Google Scholar 

  26. J. Druce, H. Tellez, M. Burriel, M.D. Sharp, L.J. Fawcett, S.N. Cook, D. S. McPhail, T. Ishihara, H.H. Brongersma, and J.A. Kilner: Surface termination and subsurface restructuring of perovskite-based solid oxide electrode materials. Energy Environ. Sci. 7, 3593 (2014).

    Article  CAS  Google Scholar 

  27. A.J. Bard: Chapter 9: Methods involving forced convection-hydrodynamic methods. In Electrochemical Methods: Fundamentals and Applications, edited by A.J. Bard and L.R. Faulkner (Wiley, New York, 1980), pp. 331–367.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Devendra Tiwari and Gael Gobaille-Shaw for the fruitful discussions. V. C. and D. J. F. are thankful to the UK Catalysis Hub (EPSRC grants EP/K014706/1 and EP/K014714/1) for resources and support. L. J. M. and D. J. F. are also grateful to the EPSRC Centre for Doctoral Training in Catalysis for the financial support. SEM/EDX and TEM studies were carried out in the Chemistry Imaging Facility at the University of Bristol with equipment partly funded by EPSRC (EP/K035746/1 and EP/M028216/1). Authors acknowledge access to the Bristol NanoESCA Facility under EPSRC Strategic Equipment Grant EP/M000605/1. D. J. F. also acknowledges the University Research Fellowship (2015–2016) provided by the Institute of Advanced Studies of the University of Bristol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Fermin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celorrio, V., Morris, L.J., Cattelan, M. et al. Tellurium-doped lanthanum manganite as catalysts for the oxygen reduction reaction. MRS Communications 7, 193–198 (2017). https://doi.org/10.1557/mrc.2017.22

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.22

Navigation