Skip to main content
Log in

Focused ion beam characterization of deformation resulting from nanoindentation of nanoporous gold

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Regions of deformation resulting from nanoindentation testing of nanoporous gold (np-Au) are characterized by cross-sectional imaging of the ligament structure directly beneath the surface, after lift-out using focused ion beam techniques. Permanent deformation of the porous structure was not exclusively confined to the region directly in contact with the indenter but extended much deeper into the sample. Implications of these observations with respect to previous measurements of the mechanical properties of np-Au are discussed. The conclusions provide initial insight into the deformation behavior of np structures during nanoindentation, as well as a basis for extending this technique to other np metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. C. Song: Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 115, 2–32 (2006).

    Article  CAS  Google Scholar 

  2. F.H. Alharbi and S. Kais: Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew. Sustain. Energy Rev. 43, 1073–1089 (2015).

    Article  Google Scholar 

  3. J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A. Briseno, and P. Yang: TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent. Sci. 2, 80–88 (2016).

    Article  CAS  Google Scholar 

  4. Q. Guo, C. Zhou, Z. Ma, Z. Ren, H. Fan, and X. Yang: Elementary photocatalytic chemistry on TiOP2 surfaces. Chem. Soc. Rev. 45, 3701–3730 (2016).

    Article  CAS  Google Scholar 

  5. L. Yang, D. Yin, Y. Shen, M. Yang, X. Li, X. Han, X. Jiang, and B. Zhao: Mesoporous semiconducting TiO2 with rich active sites as a remarkable substrate for surface-enhanced Raman scattering. Phys. Chem. Chem. Phys. 19, 18731–18738 (2017).

    Article  CAS  Google Scholar 

  6. F. Mendizabal, R. Mera-Adasme, W.-H. Xu, and D. Sundholm: Electronic and optical properties of metalloporphyrins of zinc on TiO2 cluster in dyesensitized solar-cells (DSSC). A quantum chemistry study. RSC Adv. 7, 742677–742684 (2017).

    Article  Google Scholar 

  7. T. Jiang, L. Zhang, M. Ji, Q. Wang, Q. Zhao, X. Fu, and H. Yin: Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye. Particuology 11, 737–742 (2013).

    Article  CAS  Google Scholar 

  8. D. Zhang, F. Xie, P. Lin, and W.C.H. Choy: Al-TiO2 composite-modified single-layer graphene as an efficient transparent cathode for organic solar cells. ACS Nano 7, 1740–1747 (2013).

    Article  CAS  Google Scholar 

  9. J. Suave, S.M. Amorim, J. Ângelo, L. Andrade, A. Mendes, and R.F.P. M. Moreira: TiO2/reduced graphene oxide composites for photocatalytic degradation in aqueous and gaseous medium. J. Photochem. Photobiol. Chem. 348, 326–336 (2017).

    Article  CAS  Google Scholar 

  10. H. Tian, K. Shen, X. Hu, L. Qiao, and W. Zheng: N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity. J. Alloys Compd. 691, 369–377 (2017).

    Article  CAS  Google Scholar 

  11. D. Pan, J. Jiao, Z. Li, Y. Guo, C. Feng, Y. Liu, L. Wang, and M. Wu: Efficient separation of electron-hole pairs in graphene quantum dots by TiO2 heterojunctions for dye degradation. ACS Sustain. Chem. Eng. 3, 2405–2413 (2015).

    Article  CAS  Google Scholar 

  12. R. Long, D. Casanova, W-H. Fang, and O.V. Prezhdo: Donor-acceptor interaction determines the mechanism of photoinduced electron injection from graphene quantum dots into TiO2: p-stacking supersedes covalent bonding. J. Am. Chem. Soc. 139, 2619–2629 (2017).

    Article  CAS  Google Scholar 

  13. K.J. Williams, C.A. Nelson, X. Yan, L.-S. Li, and X. Zhu: Hot electron injection from graphene quantumdots to TiO2.ACS Nano 7, 1388–1394 (2013).

    Article  CAS  Google Scholar 

  14. K.A.S. Fernando, S. Sahu, Y. Liu, W.K. Lewis, E.A. Guliants, A. Jafariyan, P. Wang, C. Bunker, and Y.P. Sun: Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 7, 8363–8376 (2015).

    Article  CAS  Google Scholar 

  15. J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. Alemany, X. Zhan, G. Gao, S. Vithayathil, B. Kaipparettu, A. Marti, T. Hayashi, J. Zhu, and P. Ajayan: Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844–849 (2012).

    Article  CAS  Google Scholar 

  16. R. Ye, C. Xiang, J. Lin, Z. Peng, K. Huang, Z. Yan, N. Cook, E. Samuel, C. Hwang, G. Ruan, G. Ceriotti, A. Rajji, A. Marti, and J. Tour: Coal as an abundant source of graphene quantum dots. Nat. Commun. 4, 2943 (2013). doi: 10.1038/ncomms3943.

    Article  Google Scholar 

  17. J.G. Lee, D.Y. Kim, J.J. Park, Y.H. Cha, J.Y. Yoon, H.S. Jeon, B.K. Min, M. T. Swihart, S. Jin, S. Deyab, and S. Yoon: Graphene-titania hybrid photoanodes by supersonic kinetic spraying for solar water splitting. J. Am. Ceram. Soc. 11, 3660–3668 (2014).

    Article  Google Scholar 

  18. N. Gobi, D. Vijaykumar, O. Keles, and F. Erogbogbo: Infusion of graphene quantum dots to create stronger, tougher, and brighter polymer composites. ACS Omega 2, 4356–4362 (2017).

    Article  CAS  Google Scholar 

  19. B. Yuan, X. Sun, J. Yan, Z. Xie, P. Chen, and S. Zhou: C96H30 tailored single-layer and single-crystalline graphene quantum dots. Phys. Chem. Chem. Phys. 18, 25002–25009 (2016).

    Article  CAS  Google Scholar 

  20. J.D. Xie, G.-W. Lai, and M.M. Huq: Hydrothermal route to graphene quantum dots: Effects of precursor and temperature. Diam. Relat. Mater. 79, 112–118 (2017).

    Article  CAS  Google Scholar 

  21. T. Fan, W. Zeng, W. Tang, C. Yuan, S. Tong, K. Cai, Y. Liu, W. Huang, Y. Min, and A. Epstein: Controllable size-selective method to prepare graphene quantum dots from graphene oxide. Nanoscale Res. Lett. 10, 55 (2015). doi: 10.1186/s11671-015-0783-9.

    Article  Google Scholar 

  22. L. Lin, M. Ron, S. Lu, X. Song, Y. Zhong, J. Yan, Y. Wang, and X. Chen: A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale 7, 1872–1878 (2015).

    Article  CAS  Google Scholar 

  23. F. Zhang, F. Liu, C. Wang, X. Xin, J. Liu, S. Guo, and J. Zhang: Effect of lateral size of graphene quantum dots on their properties and application. ACS Appl. Mater. Interfaces 8, 2104–2110 (2016).

    Article  CAS  Google Scholar 

  24. K. Shen, X. Xue, X. Wang, X. Hu, H. Tian, and W. Zheng: One-step synthesis of band-tunable N, S co-doped commercial TiO2/graphene quantum dots composites with enhanced photocatalytic activity. RSC Adv. 7, 23319–23327 (2017).

    Article  CAS  Google Scholar 

  25. S. Kim, J.K. Seo, J.H. Park, Y. Song, Y.S. Meng, and N.J. Heller: White-light emission of blue-luminescent graphene quantum dots by europium (III) complex incorporation. Carbon 124, 479–485 (2017).

    Article  CAS  Google Scholar 

  26. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, and G. Chen: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 4738–4743 (2012).

    Article  CAS  Google Scholar 

  27. Z. Gan, H. Xu, and Y. Hao: Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8, 7794–7807 (2016).

    Article  CAS  Google Scholar 

  28. C.Y. Teng, B.S. Nguyen, T.F. Yeh, Y.L. Lee, S.J. Chen, and H. Teng: Roles of nitrogen functionalities in enhancing the excitation-independent greencolor photoluminescence of graphene oxide dots. Nanoscale 9, 8256–8265 (2017).

    Article  CAS  Google Scholar 

  29. G. Kumar, U. Thupakula, P. Kanti Sarkar, and S. Acharya: Easy extraction of water-soluble graphene quantum dots for light emitting diodes. RSC Adv. 5, 27711–27716 (2015).

    Article  CAS  Google Scholar 

  30. O. Ola, and M.M. Maroto-Valer: Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C Photochem. Rev. 24, 16–42 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation under Grant No. DMR-0847693. The authors acknowledge the Electron Microscopy Center at the University of Kentucky for access to the FEI Helios Nanolab 660 dual-beam FIB-SEM, and Ken Wu from FEI Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas J. Briot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briot, N.J., Balk, T.J. Focused ion beam characterization of deformation resulting from nanoindentation of nanoporous gold. MRS Communications 8, 132–136 (2018). https://doi.org/10.1557/mrc.2017.138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2017.138

Navigation