Skip to main content
Log in

Solution-based synthesis of carbon-hematite composite thin films for high-performance supercapacitor applications

  • Functional Oxides Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Supercapacitor has received intense interest due to its high-charge/discharge rate and high-power density. C/Fe2O3 layer with different C/Fe ratios were synthesized by a solution-based approach for supercapacitor application. The influence of synthesis conditions on their electrochemical performances was investigated. Cobalt was added into C/Fe2O3 and significant improved its performance. The optimal C/Fe2O3 sample gives a high specific capacitance of 85.3 F/g and the addition of Co3O4 further increase the capacitance of obtained C/Fe2O3/Co3O4 to 144.4 F/g at 5 A/g. This work demonstrates an efficient supercapacitor application of low-cost metal oxides and facile solution-based synthesis approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Table I.
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. J. Su and L. Vayssieres: A place in the sun for artificial photosynthesis? ACS Energy Lett. 1, 121 (2016).

    Article  CAS  Google Scholar 

  2. A. Gallo, J. Simões-Moreira, H. Costa, M. Santos, and E.M. dos Santos: Energy storage in the energy transition context: a technology review. Renew. Sustain. Energy Rev. 65, 800 (2016).

    Article  CAS  Google Scholar 

  3. G. Wang, L. Zhang, and J. Zhang: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012).

    Article  CAS  Google Scholar 

  4. J. Gamby, P. Taberna, P. Simon, J. Fauvarque, and M. Chesneau: Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109 (2001).

    Article  CAS  Google Scholar 

  5. T. Lin, I.-W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, and F. Huang: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508 (2015).

    Article  CAS  Google Scholar 

  6. C.H. Kim, J.-H. Wee, Y.A. Kim, K.S. Yang, and C.-M. Yang: Tailoring the pore structure of carbon nanofibers for achieving ultrahigh-energy-density supercapacitors using ionic liquids as electrolytes. J. Mater. Chem. A 4, 4763 (2016).

    Article  CAS  Google Scholar 

  7. Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, and R.B. Kaner: Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44, 3639 (2015).

    Article  CAS  Google Scholar 

  8. Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, and Y. Tong: Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 1601053 (2016). doi: 10.1002/aenm.201601053.

    Google Scholar 

  9. C. Xia, W. Chen, X. Wang, M.N. Hedhili, N. Wei, and H.N. Alshareef: Highly stable supercapacitors with conducting polymer core–shell electrodes for energy storage applications. Adv. Energy Mater. 5, 1401805 (2015).

    Article  Google Scholar 

  10. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, and X.W.D. Lou: Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166 (2012).

    Article  CAS  Google Scholar 

  11. P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, and Z.L. Wang: Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14, 731 (2014).

    Article  CAS  Google Scholar 

  12. J. Deng, L. Kang, G. Bai, Y. Li, P. Li, X. Liu, Y. Yang, F. Gao, and W. Liang: Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochim. Acta 132, 127 (2014).

    Article  CAS  Google Scholar 

  13. G. Binitha, M. Soumya, A.A. Madhavan, P. Praveen, A. Balakrishnan, K. Subramanian, M. Reddy, S.V. Nair, A.S. Nair, and N. Sivakumar: Electrospun a-Fe2O3 nanostructures for supercapacitor applications. J. Mater. Chem. A 1, 11698 (2013).

    Article  CAS  Google Scholar 

  14. S. Shivakumara, T.R. Penki, and N. Munichandraiah: High specific surface area a-Fe2O3 nanostructures as high performance electrode material for supercapacitors. Mater. Lett. 131, 100 (2014).

    Article  CAS  Google Scholar 

  15. P. Lorkit, M. Panapoy, and B. Ksapabutr: Iron oxide-based supercapacitor from ferratrane precursor via sol–gel-hydrothermal process. Energy Proc. 56, 466 (2014).

    Article  CAS  Google Scholar 

  16. M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu: Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72 (2013).

    Article  CAS  Google Scholar 

  17. Q. Liao, N. Li, S. Jin, G. Yang, and C. Wang: All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9, 5310 (2015).

    Article  CAS  Google Scholar 

  18. S. Gu, Z. Lou, L. Li, Z. Chen, X. Ma, and G. Shen: Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications. Nano Res. 9, 424 (2016).

    Article  CAS  Google Scholar 

  19. L. Liu, J. Lang, P. Zhang, B. Hu, and X. Yan: Facile synthesis of Fe2O3 nano-dots@ nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Appl. Mater. Interfaces 8, 9335 (2016).

    Article  CAS  Google Scholar 

  20. H. Liu, J. Zhang, D. Xu, L. Huang, S. Tan, and W. Mai: Easy one-step hydrothermal synthesis of nitrogen-doped reduced graphene oxide/iron oxide hybrid as efficient supercapacitor material. J. Solid State Electrochem. 19, 135 (2015).

    Article  CAS  Google Scholar 

  21. T.-C. Liu, W. Pell, and B. Conway: Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance. Electrochim. Acta 44, 2829 (1999).

    Article  CAS  Google Scholar 

  22. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, and G. Gruner: Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9, 1872 (2009).

    Article  CAS  Google Scholar 

  23. M. Reddy, T. Yu, C.-H. Sow, Z.X. Shen, C.T. Lim, G. Subba Rao, and B. Chowdari: a-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 17, 2792 (2007).

    Article  CAS  Google Scholar 

  24. X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, and R.S. Ruoff: Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333 (2011).

    Article  CAS  Google Scholar 

  25. J. Balbuena, G. Carraro, M. Cruz, A. Gasparotto, C. Maccato, A. Pastor, C. Sada, D. Barreca, and L. Sánchez: Advances in photocatalytic NOx abatement through the use of Fe2O3/TiO2 nanocomposites. RSC Adv. 6, 74878 (2016).

    Article  CAS  Google Scholar 

  26. Y. Zhu, S. Murali, M.D. Stoller, K. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, and M. Thommes: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537 (2011).

    Article  CAS  Google Scholar 

  27. Q. Li, K. Li, C. Sun, and Y. Li: An investigation of Cu2+ and Fe2+ ions as active materials for electrochemical redox supercapacitors. J. Electroanal. Chem. 611, 43 (2007).

    Article  CAS  Google Scholar 

  28. G. Nie, X. Lu, J. Lei, Z. Jiang, and C. Wang: Electrospun V2O5-doped a-Fe2O3 composite nanotubes with tunable ferromagnetism for high-performance supercapacitor electrodes. J. Mater. Chem. A 2, 15495 (2014).

    Article  CAS  Google Scholar 

  29. B. Zhang, W. Li, J. Sun, G. He, R. Zou, J. Hu, and Z. Chen: NiO/MnO2 core/shell nanocomposites for high-performance pseudocapacitors. Mater. Lett. 114, 40 (2014).

    Article  CAS  Google Scholar 

  30. L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maragno, and E. Tondello: Hybrid chemical vapor deposition/sol–gel route in the preparation of nanophasic LaCoO3 films. Chem. Mater. 17, 427 (2005).

    Article  CAS  Google Scholar 

  31. X. Wang, X. Chen, L. Gao, H. Zheng, Z. Zhang, and Y. Qian: One-dimensional arrays of Co3O4 nanoparticles: synthesis, characterization, and optical and electrochemical properties. J. Phys. Chem. B 108, 16401 (2004).

    Article  CAS  Google Scholar 

  32. V. Jimenez, A. Fernandez, J. Espinos, and A. González-Elipe: The state of the oxygen at the surface of polycrystalline cobalt oxide. J. Electron Spectrosc. Relat. Phenom. 71, 61 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant numbers 51202186 and 51236007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhan Su.

Additional information

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2016.60.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2016.60.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Liu, S., Wang, J. et al. Solution-based synthesis of carbon-hematite composite thin films for high-performance supercapacitor applications. MRS Communications 6, 367–374 (2016). https://doi.org/10.1557/mrc.2016.60

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.60

Navigation