Skip to main content
Log in

Hierarchical nanostructures of BiOBr/AgBr on electrospun carbon nanof ibers with enhanced photocatalytic activity

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this paper, hierarchical nanostructures of BiOBr/AgBr on electrospun carbon nanofibers (CNFs) were prepared by combination of electro-spinning and carbonization. Compared with the smooth surface of CNFs, the rough surface with hierarchical nanostructures of BiOBr/AgBr can be obtained by adding the certain amount of BiOBr/AgBr precursors into the spinning solution. The as-prepared composite CNFs exhibited highly photocatalytic activities for degradation of rhodamine-B and reduction of p-nitrophenol under the visible-light irradiation and at room temperature. Furthermore, the as-prepared composite CNFs showed the favor separation, recovery, and cyclic utilization properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. G. Liu, J. Pan, L. Yin, J.T.S. Irvine, F. Li, J. Tan, P. Wormald, and H-M. Cheng: Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres. Adv. Fund. Mater. 22, 3233–3238 (2012).

    CAS  Google Scholar 

  2. J. Zhang, L.J. Xu, Z.Q. Zhu, and Q.J. Liu: Synthesis and properties of (Yb, N)-Ti02 photocatalyst for degradation of methylene blue (MB) under visible light irradiation. Mater. Res. Bull. 70, 358–364 (2015).

    CAS  Google Scholar 

  3. Y. Zang and R. Farnood: Photocatalytic activity of AgBr/TiO2 in water under simulated sunlight irradiation. Appl. Catal. B: Environ. 79, 334–340 (2008).

    CAS  Google Scholar 

  4. F. He, X. Qin, H. Zhang, Y. Yang, X. Zhang, and Y. Yang: Characterization of laccase isoenzymes from the white-rot fungus Ganoderma sp.En3 and synergistic action of isoenzymes for dye decolorization. J. Chem. Technol. Biotechnol. 90, 2265–2279 (2014).

    Google Scholar 

  5. M. Asgher, H.N. Bhatti, M. Ashraf, and R.L. Legge: Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19, 771–783 (2008).

    CAS  Google Scholar 

  6. J. Dong, X. Wang, B. Li, and Z. Chi: Kinetics of BTEX biodegradation coupled with Fe(lll) reduction by indigenous microorganisms in simulated underground environment. Desalin. Water Treat. 54, 2334–2341 (2015).

    CAS  Google Scholar 

  7. G. Di Bella, M.G. Giustra, and G. Freni: Optimisation of coagulation/floc-culation for pre-treatment of high strength and saline wastewater: performance analysis with different coagulant doses. Chem. Eng. J. 254, 283–292 (2014).

    Google Scholar 

  8. T. Suopajarvi, H. Liimatainen, O. Hormi, and J. Niinimaki: Coagulation-flocculation treatment of municipal wastewater based on anionized nano-celluloses. Chem. Eng. J. 231, 59–67 (2013).

    CAS  Google Scholar 

  9. H. Ghodbane, O. Hamdaoui, J. Vandamme, J. Van Durme, P. Vanraes, C. Leys, and A.Y. Nikiforov: Degradation of AB25 dye in liquid medium by atmospheric pressure non-thermal plasma and plasma combination with photocatalyst TiO2. Open Chem. 13, 325–331 (2015).

    Google Scholar 

  10. C. Anderson and A.J. Bard: An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J. Phys. Chem. 99, 9882–9885 (1995).

    CAS  Google Scholar 

  11. G. Jiang, X. Zheng, Y. Wang, T. Li, and X. Sun: Photo-degradation of methylene blue by multi-walled carbon nanotubes/TiO2 composites. Powder Technol. 207, 465–469 (2011).

    CAS  Google Scholar 

  12. G. Jiang, R. Wang, Y. Wang, and X. Sun: Preparation of Cu2O/TiO2 composite porous carbon microspheres as efficient visible light-responsive photocatalysts. Powder Technol. 212, 284–288 (2011).

    CAS  Google Scholar 

  13. L. Khenniche, L. Favier, A. Bouzaza, F. Fourcade, F. Aissani, and A. Amrane: Photocatalytic degradation of bezacryl yellow in batch reactors-feasibility of the combination of photocatalysis and a biological treatment. Environ. Technol. 36, 1–10 (2015).

    CAS  Google Scholar 

  14. W. Panpa, P. Sujaridworakun, and S. Jinawath: Photocatalytic activity of TiO2/ZSM-5 composites in the presence of SO42- ion. Appl. Catal. B: Environ. 80, 271–276 (2008).

    CAS  Google Scholar 

  15. N. Kinadjian, M. Le Bechec, C. Henrist, E. Prouzet, S. Lacombe, and R. Backov: Varying TiO2 macroscopic fiber morphologies toward tuning their photocatalytic properties. ACS Appl. Mater. Interfaces 6, 11211–11218 (2014).

    CAS  Google Scholar 

  16. R. Wang, G. Jiang, Y. Ding, Y. Wang, X. Sun, X. Wang, and W. Cheng: Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes. ACS Appl. Mater. Interfaces 3, 4154–4158 (2011).

    CAS  Google Scholar 

  17. H. Katsumata, T. Sakai, T. Suzuki, and S. Kaneco: Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light. Ind. Eng. Chem. Res. 53, 8018–8025 (2014).

    CAS  Google Scholar 

  18. J.H. Carey, J. Lawrence, and H.M. Tosine: Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspension. Bull. Environ. Contam. Toxicol. 16, 697–701 (1976).

    CAS  Google Scholar 

  19. Y. Fang, G. Jiang, R. Wang, Y. Wang, X. Sun, S. Wang, and T. Wang: CuO/ TiO2 nanocrystals grown on graphene oxide as visible-light responsive photocatalytic hybrid materials. Bull. Mater. Sci. 35, 495–499 (2012).

    CAS  Google Scholar 

  20. G. Jiang, Y. Zhou, R. Wang, X. Wang, R. Hu, X. Xi, S. Wang, T. Wang, and W. Chen: Hollow TiO2 nanocages with rubik-like structure for high-performance photocatalysts. Mater. Lett. 89, 59–62 (2012).

    CAS  Google Scholar 

  21. M. Humayun, A. Zada, Z. Li, M. Xie, X. Zhang, Y. Qu, F. Raziq, and L. Jing: Enhanced visible-light activities of porous BiFeO3 by coupling with nano-crystalline TiO2 and mechanism. Appl. Catal. B: Environ. 180, 219–226 (2016).

    CAS  Google Scholar 

  22. Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, and Z. Wang: Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity. J. Alloy. Compd. 651, 114–120 (2015).

    CAS  Google Scholar 

  23. X. Li, G. Jiang, Z. Wei, X. Wang, W. Chen, and L. Shen: One-pot solvo-thermal preparation of S-doped BiOBr microspheres for efficient visible-light induced photocatalysis. MRS Commun. 3, 219–224 (2013).

    CAS  Google Scholar 

  24. G. Jiang, B. Tang, X. Li, Z. Wei, X. Wang, Y. Liu, and W. Chen: Preparation of Ag-modified Zn2GeO4 nanorods for photodegradation of organic pollutants. Powder Technol. 251, 37–40 (2014).

    CAS  Google Scholar 

  25. B. Tang, G. Jiang, Z. Wei, X. Li, X. Wang, T. Jiang, W. Chen, and J. Wan: Preparation of N-doped Bi2WO4 microspheres for efficient visible-light induced photocatalysis. Acta Metall. Sin. Engl. Lett. 27, 124–130 (2014).

    CAS  Google Scholar 

  26. W. Wang, F. Huang, X. Lin, and J. Yang: Visible-light-responsive photocatalysts xBiOBr-(1-x)BiOI. Catal. Commun. 9, 8–12 (2008).

    CAS  Google Scholar 

  27. L. Cui, T. Jiao, Q. Zhang, J. Zhou, and Q. Peng: Facile preparation of silver halide nanoparticles as visible light photocatalysts. Nanotechnol. Nanomater 5, 60910 (2015).

    Google Scholar 

  28. L. Kong, Z. Jiang, H.H. Lai, R.J. Nicholls, T. Xiao, M.O. Jones, and P.P. Edwards: Unusual reactivity of visible-light-responsive AgBr-BiOBr heterojunction photocatalysts. J. Catal. 293, 116–125 (2012).

    CAS  Google Scholar 

  29. L. Lu, L. Kong, Z. Jiang, H.H-C. Lai, T. Xiao, and P.P. Edwards: Visible-light-driven photodegradation of rhodamine B on Ag-modified BiOBr. Catal. Lett. 142, 771–778 (2012).

    CAS  Google Scholar 

  30. Y. Liu, G. Jiang, L Li, H. Chen, Q. Huang, T. Jiang, X. Du, and W. Chen: Preparation of Au/PAN nanofibrous membranes for catalytic reduction of 4-nitrophenol. J. Mater. Sci. 50, 8120–8127 (2015).

    CAS  Google Scholar 

  31. Y. Liu, M. Zhang, L. Li, and X. Zhang: One-dimensional visible-light-driven bifunctional photocatalysts based on Bi4Ti3O12 nanofiber frameworks and Bi2XO6 (X=Mo, W) nanosheets. Appl. Catal. B: Environ. 160-161, 757–766 (2014).

    Google Scholar 

  32. H. Huang, S. Wang, N. Tian, and Y. Zhang: A one-step hydrothermal preparation strategy for layered BN04/Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. RSC Adv. 4, 5561–5567 (2014).

    CAS  Google Scholar 

  33. M. Zhang, C. Shao, J. Mu, Z. Zhang, Z. Guo, P. Zhang, and Y. Liu: One-dimensional Bi2MoO6/TiO2 hierarchical heterostructures with enhanced photocatalytic activity. CrystEngComm 14, 605–612 (2012).

    CAS  Google Scholar 

  34. G. Jiang, Z. Wei, H. Chen, X. Du, L. Li, Y. Liu, Q. Huang, and W. Chen: Preparation of novel carbon nanofibers with BiOBr and AgBr decorating for photocatalytic degradation of rhodamine B. RSC Adv. 5, 30433–30437 (2015).

    CAS  Google Scholar 

  35. J. Zhang, F. Shi, J. Lin, D. Chen, J. Gao, Z. Huang, X. Ding, and C. Tang: Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem. Mater. 20, 2937–2941 (2008).

    CAS  Google Scholar 

  36. G. Jiang, X. Li, Z. Wei, X. Wang, B. Tang, and W. Chen: Growth of N-doped BiOBr nanosheets on carbon fibers for high efficient photocata-lytic degradation of organic pollutants under visible light irradiation. Powder Technol. 260, 84–89 (2014).

    CAS  Google Scholar 

  37. G. Jiang, X. Li, Z. Wei, X. Wang, T. Jiang, X. Du, and W. Chen: Immobilization of N/S-codoped BiOBr nanosheets on glass fibers for pho-tocatalytic degradation of rhodamine B. Powder Technol. 261, 170–175 (2014).

    CAS  Google Scholar 

  38. R. Dong, B. Tian, J. Zhang, T. Wang, Q. Tao, S. Bao, F. Yang, and C. Zeng: AgBr@Ag/TiO2 core-shell composite with excellent visible light photoca-talytic activity and hydrothermal stability. Catal. Commun. 38, 16–20 (2013).

    CAS  Google Scholar 

  39. B. Tian, T. Wang, R. Dong, S. Bao, F. Yang, and J. Zhang: Core-shell structures γ-Fe2O3@SiO2@AgBr: Ag composite with high magnetic separation efficiency and excellent visible light activity for acid orange 7 degradation. Appl. Catal. B: Environ. 147, 22–28 (2014).

    CAS  Google Scholar 

  40. P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M. Abd-Lefdil, and R. Diaz: XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci. 258, 8807–8813 (2012).

    CAS  Google Scholar 

  41. N. Feng, Q. Wang, A. Zheng, Z. Zhang, J. Fan, S-B. Liu, J-P. Amoureux, and F. Deng: Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J. Am. Chem. Soc. 135, 1607–1616 (2013).

    CAS  Google Scholar 

  42. Z. Jinfeng and Z. Tao: Preparation and characterization of highly efficient and stable visible-light-responsive photocatalyst AgBr/Ag3PO4. J. Nanomater. 2013, 565074 (2013).

    Google Scholar 

  43. H. Liu, Y. Su, Z. Chen, Z. Jin, and Y. Wang: Novel 3D flowerlike Au/ BiOBrau]0._2lau]0._8 composites with highly enhanced visible-light photocatalytic performances. Sep. Purlf. Technol. 133, 343–350 (2014).

    CAS  Google Scholar 

  44. C. Liu, D. Yang, Y. Jiao, Y. Tian, Y. Wang, and Z. Jiang: Biomimetic synthesis of TiO2-SiO2-Ag nanocomposites with enhanced visible-light photocatalytic activity. ACS Appl. Mater. Interfaces 5, 3824–3832 (2013).

    CAS  Google Scholar 

  45. H. Chen, G. Jiang, L. Li, Y. Liu, Q. Huang, T. Jiang, and X. Du: Facile fabrication of highly flexible graphene paper for photocatalytic reduction of 4-nitrophenol. Bull. Mater. Sci. 38, 1457–1463 (2015).

    CAS  Google Scholar 

  46. D. Méndez, R. Vargas, C. Borrás, S. Blanco, J. Mostany, and B.R. Scharifker: A rotating disk study of the photocatalytic oxidation of p-nitrophenol on phosphorus-modified TiO2 photocatalyst. Appl. Catal. B: Environ. 166-167, 529–534 (2015).

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant numbers 51373155 and 51133006) and “521 Talents Training Plan” in Zhejiang Sci-Tech University (ZSTU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Jiang, G., Chen, H. et al. Hierarchical nanostructures of BiOBr/AgBr on electrospun carbon nanof ibers with enhanced photocatalytic activity. MRS Communications 6, 61–67 (2016). https://doi.org/10.1557/mrc.2016.6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.6

Navigation