Skip to main content
Log in

Tuning the physical properties of amorphous In-Zn-Sn-O thin films using combinatorial sputtering

  • Functional Oxides Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Transparent conductive oxides and amorphous oxide semiconductors are important materials for many modern technologies. Here, we explore the ternary indium zinc tin oxide (IZTO) using combinatorial synthesis and spatially resolved characterization. The electrical conductivity, work function, absorption onset, mechanical hardness, and elastic modulus of the optically transparent (>85%) amorphous IZTO thin films were found to be in the range of 10-2415 S/cm, 4.6-5.3 eV, 3.20-3.34 eV, 9.0-10.8 GPa, and 111-132 GPa, respectively, depending on the cation composition and the deposition conditions. This study enables control of IZTO performance over a broad range of cation compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table 1.
Figure 3

Similar content being viewed by others

References

  1. S.W. Ko, S.K. Kim, J.M. Kim, J.H. Cho, H.S. Park, and B.D. Choi: Electrical properties and reliability analysis of solution-processed indium tin zinc oxide thin film transistors with O2-plasma treatment. J. Nanosci. Nanotechnol. 15, 7476 (2015).

    Article  CAS  Google Scholar 

  2. P.F. Ndione, A. Garcia, N.E. Widjonarko, A.K. Sigdel, K.X. Steirer, D.C. Olson, P.A. Parilla, D.S. Ginley, N.R. Armstong, R.E. Richards, E.L. Ratcliff, and J.J. Berry: Highly-tunable nickel cobalt oxide as a low-temperature P-type contact in organic photovoltaic devices. Adv. Energy Mater. 3, 524 (2013).

    Article  CAS  Google Scholar 

  3. D. Ginley, T. Coutts, J. Perkins, D. Young, X. Li, and P. Parilla: Next-generation transparent conducting oxides for photovoltaic cells: an overview. MRS Proc. 668, H2.7.1 (2011).

  4. E. Fortunato, D. Ginley, H. Hosono, and D.C. Paine: Transparent conducting oxides for photovoltaics. MRS Bull. 32, 242 (2007).

    Article  CAS  Google Scholar 

  5. A.K. Sigdel, P.F. Ndione, J.D. Perkins, T. Gennett, M.F.A.M. van Hest, S.E. Shaheen, D.S. Ginley, and J.J. Berry: Radio-frequency superimposed direct current magnetron sputtered Ga:ZnO transparent conducting thin films. J. Appl. Phys. 111, 093718 (2012).

    Article  Google Scholar 

  6. T.J. Marks, J.G.C. Veinot, J. Cui, H. Yan, A. Wang, N.L. Edleman, J. Ni, Q. Huang, P. Lee, and N.R. Armstrong: Progress in high work function TCO OLED anode alternatives and OLED nanopixelation. Synth. Met. 127, 29 (2002).

    Article  CAS  Google Scholar 

  7. D.E. Proffit, T. Philippe, J.D. Emery, Q. Ma, B.D. Buchholz, P.W. Voorhees, M.J. Bedzyk, R.P.H. Chang, and T.O. Mason: Thermal stability of amorphous Zn-In-Sn-O films. J. Electroceram. 34, 167 (2014).

    Article  Google Scholar 

  8. Y.S. Kim, W.J. Hwang, K.T. Eun, and S.-H. Choa: Mechanical reliability of transparent conducting IZTO film electrodes for flexible panel displays. Appl. Surf. Sci. 257, 8134 (2011).

    Article  CAS  Google Scholar 

  9. K. Zeng, F. Zhu, J. Hu, L. Shen, K. Zhang, and H. Gong: Investigation of mechanical properties of transparent conducting oxide thin films. Thin Solid Films 443, 60 (2003).

    Article  CAS  Google Scholar 

  10. R.A. John, A.C. Nguyen, Y. Chen, S. Shukla, S. Chen, and N. Mathews: Modulating cationic ratios for high-performance transparent solution-processed electronics. ACS Appl. Mater. Interfaces 8, 1139 (2016).

    Article  CAS  Google Scholar 

  11. M. Kumar, A.K. Sigdel, T. Gennett, J.J. Berry, J.D. Perkins, D.S. Ginley, and C.E. Packard: Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity. Appl. Surf. Sci. 283, 65 (2013).

    Article  CAS  Google Scholar 

  12. D.-J. Son, Y.-D. Ko, D.-G. Jung, J.-H. Boo, S.-H. Choa, and Y.-S. Kim: Thermal effect on characteristics of IZTO thin films deposited by pulsed DC magnetron sputtering. Bull. Korean Chem. Soc. 32, 847 (2011).

    Article  CAS  Google Scholar 

  13. J.M. Phillips, R.J. Cava, G.A. Thomas, S.A. Carter, J. Kwo, T. Siegrist, J.J. Krajewski, J.H. Marshall, W.F. Peck, and D.H. Rapkine: Zinc-indium-oxide: a high conductivity transparent conducting oxide. Appl. Phys. Lett. 67, 2246 (1995).

    Article  CAS  Google Scholar 

  14. S.P. Harvey, K.R. Poeppelmeier, and T.O. Mason: Subsolidus phase relationships in the ZnO–In2O3–SnO2 system. J. Am. Ceram. Soc. 91, 3683 (2008).

    Article  CAS  Google Scholar 

  15. M.K. Ryu, S. Yang, S.-H.K. Park, C.-S. Hwang, and J.K. Jeong: High performance thin film transistor with cosputtered amorphous Zn–In–Sn–O channel: combinatorial approach. Appl. Phys. Lett. 95, 072104 (2009).

    Article  Google Scholar 

  16. T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono: Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: an application to amorphous oxide semiconductors in In–Ga–Zn–O system. Appl. Phys. Lett. 90, 242114 (2007).

    Article  Google Scholar 

  17. M.P. Taylor, D.W. Readey, C.W. Teplin, M.F.A.M.v. Hest, J.L. Alleman, M.S. Dabney, L.M. Gedvilas, B.M. Keyes, B. To, J.D. Perkins, and D.S. Ginley: The electrical, optical and structural properties of InxZn1–xOy (0 = x = 1) thin films by combinatorial techniques. Meas. Sci. Technol. 16, 90 (2005).

    Article  CAS  Google Scholar 

  18. J.K. Bunn, R.Z. Voepel, Z. Wang, E.P. Gatzke, J.A. Lauterbach, and J.R. Hattrick-Simpers: Development of an optimization procedure for magnetron-sputtered thin films to facilitate combinatorial materials research. Ind. Eng. Chem. Res. 55, 1236 (2016).

    Article  CAS  Google Scholar 

  19. M.L. Green, I. Takeuchi, and J.R. Hattrick-Simpers: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113, 231101 (2013).

    Article  Google Scholar 

  20. A. Zakutayev, J.D. Perkins, P.A. Parilla, N.E. Widjonarko, A.K. Sigdel, J.J. Berry, and D.S. Ginley: Zn–Ni–Co–O wide-band-gap p-type conductive oxides with high work functions. MRS Commun. 1, 23 (2011).

    Article  CAS  Google Scholar 

  21. X.D. Li and B. Bhushan: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11 (2002).

    Article  CAS  Google Scholar 

  22. D.B. Buchholz, D.E. Proffit, M.D. Wisser, T.O. Mason, and R.P.H. Chang: Electrical and band-gap properties of amorphous zinc–indium–tin oxide thin films. Progr. Nat. Sci.: Mater. Int. 22, 1 (2012).

    Article  Google Scholar 

  23. T. Kamiya, K. Nomura, and H. Hosono: Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping. J. Disp. Technol. 5, 273 (2009).

    Article  CAS  Google Scholar 

  24. J. Rosen and O. Warschkow: Electronic structure of amorphous indium oxide transparent conductors. Phys. Rev. B 80, 115215 (2009).

    Article  Google Scholar 

  25. G.B. Palmer, K.R. Poeppelmeier, and T.O. Mason: Conductivity and transparency of ZnO/SnO2-cosubstituted In2O3. Chem. Mater. 9, 3121 (1997).

    Article  CAS  Google Scholar 

  26. Y.-B. Lu, T.L. Yang, Z.C. Ling, W.-Y. Cong, P. Zhang, Y.H. Li, and Y.Q. Xin: How does the multiple constituent affect the carrier generation and charge transport in multicomponent TCOs of In–Zn–Sn oxide. J. Mater. Chem. C 3, 7727 (2015).

    Article  CAS  Google Scholar 

  27. G.B. González: Investigating the defect structures in transparent conducting oxides using X-ray and neutron scattering techniques. Materials 5, 818 (2012).

    Article  Google Scholar 

  28. G. Frank and H. Köstlin: Electrical properties and defect model of tin-doped indium oxide layers. Appl. Phys. A: Solids Surf. 27, 197 (1982).

    Article  Google Scholar 

  29. S. Lee, K.-S. Ji, H. Park, S.J. Tark, S. Park, J.C. Lee, W.M. Kim, Y. Kang, H.-S. Lee, and D. Kim: Structural, electrical, and optical properties of Zn–In–Sn–O films for silicon heterojunction solar cells. Thin Solid Films 589, 233 (2015).

    Article  CAS  Google Scholar 

  30. H. Li and R.C. Bradt: Knoop microhardness anisotropy of single-crystal cassiterite (SnO2). J. Am. Ceram. Soc. 74, 1053 (1991).

    Article  CAS  Google Scholar 

  31. S. Barth, C. Harnagea, S. Mathur, and F. Rosei: The elastic moduli of oriented tin oxide nanowires. Nanotechnology 20, 115705 (2009).

    Article  Google Scholar 

  32. A.K. Mukhopadhyay, M.R. Chaudhuri, A. Seal, S.K. Dalui, M. Banerjee, and K.K. Phani: Mechanical characterization of microwave sintered zinc oxide. B. Mater. Sci. 24, 125 (2001).

    Article  CAS  Google Scholar 

  33. L.P. Martin, D. Dadon, M. Rosen, D. Gershon, A. Birman, B. Levush, and Y. Carmel: Ultrasonic and dielectric characterization of microwave-sintered and conventionally sintered zinc oxide. J. Am. Ceram. Soc. 79, 2652 (1996).

    Article  CAS  Google Scholar 

  34. M.S. Pradeepkumar, K.P. Sibin, N. Swain, N. Sridhara, A. Dey, H.C. Barshilia, and A.K. Sharma: Nanoindentation response of ITO film. Ceram. Int. 41, 8223 (2015).

    Article  CAS  Google Scholar 

  35. T. Ashida, A. Miyamura, N. Oka, Y. Sato, T. Yagi, N. Taketoshi, T. Baba and Y. Shigesato: Thermal transport properties of polycrystalline tin-doped indium oxide films. J. Appl. Phys. 105, 073709 (2009).

    Article  Google Scholar 

  36. D.S. Ginley, H. Hosono, and D.C. Paine: Handbook of Transparent Conductors (Springer, New York, 2010).

    Google Scholar 

  37. D.R. Cairns, D.C. Paine, and G.P. Crawford: The mechanical reliability of sputter-coated indium tin oxide polyester substrates for flexible display and touchscreen applications. MRS Online Proc. Libr. Arch. 666, F3.24 (12 pages) (2001).

  38. R.G. Gordon: Criteria for choosing transparent conductors. MRS Bull. 25, 52 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the U.S. Department of Energy, under Award Number DE-AC36-08GO28308 to the National Renewable Energy Laboratory (NREL). P.F.N. and A.Z. gratefully acknowledge support from the U.S. Department of Energy, Office of Science, Basic Energy Sciences Program, as part of the CNMGD Energy Frontier Research Center. J.D.P. and D.S.G. gratefully acknowledge support from Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Program, as a part of SunShot initiative. M.K. gratefully acknowledges funding from Center for Revolutionary Solar Photoconversion (CRSP). C.P. gratefully acknowledges funding from a joint appointment at NREL. P. F.N. would like to thank Dr. Thomas Gennett and Dr. Philip Parilla at NREL for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. Ndione.

Additional information

Present address: Department of Physics, Indian Institute of Technology Ropar, PB-140 001, India.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2016.57

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndione, P.F., Zakutayev, A., Kumar, M. et al. Tuning the physical properties of amorphous In-Zn-Sn-O thin films using combinatorial sputtering. MRS Communications 6, 360–366 (2016). https://doi.org/10.1557/mrc.2016.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.57

Navigation