Skip to main content
Log in

Design of multi-layered TiO2-Fe2O3 photoanodes for photoelectrochemical water splitting: patterning effects on photocurrent density

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We report the effect of patterning on photoelectrochemical (PEC) water-splitting performance. Oxide-oxide heterostructures based on horizontal and vertical heterojunctions were fabricated on transparent conductive oxide glass by sequential plasma enhanced chemical vapor deposition (PECVD) of individual metal oxide. Featured masks were employed to enable three-dimensional patternings of stripes and cross-bars structures formed by Fe2O3 and TiO2 layers. PEC measurement was carried out by a three-electrode cell. It was found that double layered TiO2//Fe2O3:FTO showed a decrease in PEC performance when compared with single Fe2O3:FTO layer, whereas triple-layered Fe2O3//TiO2//Fe2O3:FTO (both patterned and unpatterned samples) displayed enhanced photocurrent density. The results show that the existence of multiple phase boundaries does not always add up to PEC enhancement observed in single heterojunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table I
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. P. Millet and S. Grigoriev: Chapter 2—water electrolysis technologies. In Renewable Hydrogen Technologies, edited by L.M.G.A.M. Diéguez (Elsevier, Amsterdam, 2013), p. 19.

    Google Scholar 

  2. S.Z. Baykara: Experimental solar water thermolysis. Int. J. Hydrog. Energy 29, 1459 (2004).

    CAS  Google Scholar 

  3. N. Armaroli and V. Balzani: The hydrogen issue. ChemSusChem 4, 21 (2011).

    CAS  Google Scholar 

  4. K. Maeda and K. Domen: Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655 (2010).

    CAS  Google Scholar 

  5. I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. Grätzel: Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772 (2009).

    CAS  Google Scholar 

  6. Y. Lin, G. Yuan, S. Sheehan, S. Zhou, and D. Wang: Hematite-based solar water splitting: challenges and opportunities. Energy Env. Sci. 4, 4862 (2011).

    CAS  Google Scholar 

  7. S.K. Mohapatra, S.E. John, S. Banerjee, and M. Misra: Water photooxidation by smooth and ultrathin a-Fe2O3nanotube arrays. Chem. Mater. 21, 3048 (2009).

    CAS  Google Scholar 

  8. K. Sivula, F. Le Formal, and M. Grätzel: Solar water splitting: progress using hematite (a-Fe2O3) photoelectrodes. ChemSusChem 4, 432 (2011).

    CAS  Google Scholar 

  9. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, and J.A. Glasscock: Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrog. Energy 31, 1999 (2006).

    CAS  Google Scholar 

  10. M.P. Dare-Edwards, J.B. Goodenough, A. Hamnett, and P.R. Trevellick: Electrochemistry and photoelectrochemistry of iron(III) oxide. J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases 79, 2027 (1983).

    CAS  Google Scholar 

  11. A. Kleiman-Shwarsctein, Y.-S. Hu, A.J. Forman, G.D. Stucky, and E.W. McFarland: Electrodeposition of a-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 112, 15900 (2008).

    CAS  Google Scholar 

  12. J.A. Glasscock, P.R.F. Barnes, I.C. Plumb, and N. Savvides: Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111, 16477 (2007).

    CAS  Google Scholar 

  13. Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, and Y. Li: Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11, 2119 (2011).

    CAS  Google Scholar 

  14. S.C. Warren, K. Voïtchovsky, H. Dotan, C.M. Leroy, M. Cornuz, F. Stellacci, C. Hébert, A. Rothschild, and M. Grätzel: Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842 (2013).

    CAS  Google Scholar 

  15. X. Yang, R. Liu, C. Du, P. Dai, Z. Zheng, and D. Wang: Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition. ACS Appl. Mater. Interfaces 6, 12005 (2014).

    CAS  Google Scholar 

  16. R. Liu, Z. Zheng, J. Spurgeon, and X. Yang: Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7, 2504 (2014).

    CAS  Google Scholar 

  17. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    CAS  Google Scholar 

  18. B.-R. Kim, H.-J. Oh, K.-S. Yun, S.-C. Jung, W. Kang, and S.-J. Kim: Effect of TiO2 supporting layer on Fe2O3 photoanode for efficient water splitting. Progr. Organ. Coat. 76, 1869 (2013).

    CAS  Google Scholar 

  19. M. Wang, M. Pyeon, Y. Gonullu, A. Kaouk, S. Shen, L. Guo, and S. Mathur: Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting. Nanoscale 7, 10094 (2015).

    CAS  Google Scholar 

  20. A. Mettenbörger, Y. Gönüllü, T. Fischer, T. Heisig, A. Sasinska, C. Maccato, G. Carraro, C. Sada, D. Barreca, L. Mayrhofer, M. Moseler, A. Held, and S. Mathur: Interfacial insight in multi-junction metal oxide photoanodes for water-splitting applications. Nano Energy 19, 415 (2016).

    Google Scholar 

  21. A. Mettenbörger, T. Singh, A.P. Singh, T.T. Järvi, M. Moseler, M. Valldor, and S. Mathur: Plasma-chemical reduction of iron oxide photoanodes for efficient solar hydrogen production. Int. J. Hydrog Energy 39, 4828 (2014).

    Google Scholar 

  22. Z. Fu, T. Jiang, Z. Liu, D. Wang, L. Wang, and T. Xie: Highly photoactive Ti-doped a-Fe2O3 nanorod arrays photoanode prepared by a hydrothermal method for photoelectrochemical water splitting. Electrochim. Acta 129, 358 (2014).

    CAS  Google Scholar 

  23. X. Lian, X. Yang, S. Liu, Y. Xu, C. Jiang, J. Chen, and R. Wang: Enhanced photoelectrochemical performance of Ti-doped hematite thin films prepared by the sol–gel method. Appl. Surf. Sci. 258, 2307 (2012).

    CAS  Google Scholar 

  24. S. Li, P. Zhang, X. Song, and L. Gao: Ultrathin Ti-doped hematite photoanode by pyrolysis of ferrocene. Int. J. Hydrog. Energy 39, 14596 (2014).

    CAS  Google Scholar 

  25. X. Fan, J. Fan, X. Hu, E. Liu, L. Kang, C. Tang, Y. Ma, H. Wu, and Y. Li: Preparation and characterization of Ag deposited and Fe doped TiO2 nanotube arrays for photocatalytic hydrogen production by water splitting. Ceram. Int. 40, 15907 (2014).

    CAS  Google Scholar 

  26. M.A. Khan, S.I. Woo, and O.B. Yang: Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction. Int. J. Hydrog. Energy 33, 5345 (2008).

    CAS  Google Scholar 

  27. J. Deng, J. Zhong, A. Pu, D. Zhang, M. Li, X. Sun, and S.-T. Lee: Ti-doped hematite nanostructures for solar water splitting with high efficiency. J. Appl. Phys. 112, 084312 (2012).

    Google Scholar 

  28. D.L.A. de Faria, S. Venâncio Silva, and M.T. de Oliveira: Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28, 873 (1997).

    Google Scholar 

  29. J. Pena-Flores, A. Palomec-Garfias, C. Marquez-Beltran, E. Sanchez-Mora, E. Gomez-Barojas, and F. Perez-Rodriguez: Fe effect on the optical properties of TiO2:Fe2O3 nanostructured composites supported on SiO2 microsphere assemblies. Nanoscale Res. Lett. 9, 499 (2014).

    Google Scholar 

  30. R.S. Katiyar, P. Dawson, M.M. Hargreave, and G.R. Wilkinson: Dynamics of the rutile structure III. Lattice dynamics, infrared and Raman spectra of SnO. J. Phys. C: Solid State Phys. 4, 2421 (1971).

    CAS  Google Scholar 

  31. D. Bersani, P. Lottici, and A. Montenero: Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J. Raman Spectrosc. 30, 355 (1999).

    CAS  Google Scholar 

  32. A. Kudo and Y. Miseki: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).

    CAS  Google Scholar 

  33. P.A. van Hal, M.M. Wienk, J.M. Kroon, W.J.H. Verhees, L.H. Slooff, W.J.H. van Gennip, P. Jonkheijm, and R.A.J. Janssen: Photoinduced electron transfer and photovoltaic response of a MDMO-PPV:TiO2 bulk-heterojunction. Adv. Mater. 15, 118 (2003).

    Google Scholar 

  34. U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583 (1998).

    CAS  Google Scholar 

  35. C.-Y. Chiang, K. Aroh, N. Franson, V.R. Satsangi, S. Dass, and S. Ehrman: Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting—part II. Photoelectrochemical study. Int. J. Hydrog. Energy 36, 15519 (2011).

    CAS  Google Scholar 

  36. S. Kumari, A.P. Singh, Sonal, D. Deva, R. Shrivastav, S. Dass, and V.R. Satsangi: Spray pyrolytically deposited nanoporous Ti4+ doped hematite thin films for efficient photoelectrochemical splitting of water. Int. J. Hydrog. Energy 35, 3985 (2010).

    CAS  Google Scholar 

  37. T. Mariño-Otero, M.A. Oliver-Tolentino, M.A. Aguilar-Frutis, G. Contreras-Martínez, E. Pérez-Cappe, and E. Reguera: Effect of thickness in hematite films produced by spray pyrolysis towards water photo-oxidation in neutral media. Int. J. Hydrog. Energy 40, 5831 (2015).

    Google Scholar 

  38. J. Cao, L. Liu, A. Hashimoto, and J. Ye: Hematite photo-electrodes with multiple ultrathin SiOx interlayers towards enhanced photoelectrochemical properties. Electrochem. Commun. 48, 17 (2014).

    CAS  Google Scholar 

  39. M.H. Lee, J.H. Park, H.S. Han, H.J. Song, I.S. Cho, J.H. Noh, and K.S. Hong: Nanostructured Ti-doped hematite (a-Fe2O3) photoanodes for efficient photoelectrochemical water oxidation. Int. J. Hydrog. Energy 39, 17501 (2014).

    CAS  Google Scholar 

  40. S.S. Mao: High throughput growth and characterization of thin film materials. J. Cryst. Growth 379, 123 (2013).

    CAS  Google Scholar 

  41. W.J. Lee, P.S. Shinde, G.H. Go, and C.H. Doh: Cathodic shift and improved photocurrent performance of cost-effective Fe2O3 photoanodes. Int. J. Hydrog. Energy 39, 5575 (2014).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Mathur.

Electronic supplementary material

Fig S3 Pyeon supplementary material

Fig S2 Pyeon supplementary material

43579_2016_6040442_MOESM3_ESM.doc

Patterning effects of photoanodes fabricated by plasma enhanced chemical vapor deposition on photoelectrochemical water splitting performance: Design of multi-layered photoanodes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyeon, M., Wang, M., Gönüllü, Y. et al. Design of multi-layered TiO2-Fe2O3 photoanodes for photoelectrochemical water splitting: patterning effects on photocurrent density. MRS Communications 6, 442–448 (2016). https://doi.org/10.1557/mrc.2016.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.54

Navigation