Skip to main content
Log in

Enhanced photovoltaic performance of tin sulfide nanoparticles by indium doping

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In-doped tin (II) sulfide nanoparticles (NPs), synthesized by ultrasonication method and their optical and photovoltaic properties, have been investigated. FESEM images show NPs which have a flower-like morphology that sizes are <100 nm. Optical energy band gap estimation of tin sulfide NPs with the Tauc plot method had shown an increase with minimum of indium concentration and then decreases with higher concentration of indium. Photovoltaic experiment shows the highly photovoltaic efficiency of tin sulfide NPs with indium doping, can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table I
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Table II
Figure 8
Table III
Table IV
Figure 9

Similar content being viewed by others

References

  1. F. Bella, C. Gerbaldi, C. Barolo, and M. Grätzel: Aqueous dye-sensitized solar cells. Chem. Soc. Rev. 44, 3431 (2015).

    Article  CAS  Google Scholar 

  2. H. Li, J. Ji, X. Zheng, Y. Ma, Z. Jin, and H. Ji: Preparation of SnS quantum dots for solar cells application by an in-situ solution chemical reaction process. Mater. Sci. Semicond. Process. 36, 65 (2015).

    Article  Google Scholar 

  3. J.K. Rath, C. Prastani, D.E. Nanu, M. Nanu, R.E.I. Schropp, A. Vetushka, M. Hývl, and A. Fejfar: Fabrication of SnS quantum dots for solar-cell applications: issues of capping and doping. Phys. Status Solidi b 251, (2014).

  4. F. Niknia, F. Jamali-Sheini, and R. Yousefi: Photocurrent properties of undoped and Pb-doped SnS nanostructures grown using electrodeposition method. J. Electron. Mater. 44, 4734 (2015).

    Article  CAS  Google Scholar 

  5. J. Li, Y. Zhang, Y. Wang, C. Xue, J. Liang, G. Jiang, W. Liu, and C. Zhu: Formation of Cu2ZnSnS4 thin film solar cell by CBD-annealing route: comparison of Cu and CuS in stacked layers SnS/Cu(S)/ZnS. Sol. Energy 129, 1 (2016).

    Article  Google Scholar 

  6. P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, and R.G. Gordon: Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4, (2014).

  7. J. Li, C. Xue, Y. Wang, G. Jiang, W. Liu, and C. Zhu: Cu2SnS3 solar cells fabricated by chemical bath deposition–annealing of SnS/Cu stacked layers. Sol. Energy Mater. Sol. Cells 144, 281 (2016).

    Article  CAS  Google Scholar 

  8. Z. Tong, K. Zhang, K. Sun, C. Yan, F. Liu, L. Jiang, Y. Lai, X. Hao, and J. Li: Modification of absorber quality and Mo-back contact by a thin Bi intermediate layer for kesterite Cu2ZnSnS4 solar cells. Sol. Energy Mater. Sol. Cells 144, 537 (2016).

    Article  CAS  Google Scholar 

  9. A. Schneikart, H.J. Schimper, A. Klein, and W. Jaegermann: Efficiency limitations of thermally evaporated thin-film SnS solar cells. J. Phys. D: Appl. Phys. 46, 305109 (2013).

    Article  Google Scholar 

  10. X. Chen, Y. Hou, B. Zhang, X.H. Yang, and H.G. Yang: Low-cost SnSx counter electrodes for dye-sensitized solar cells. Chem. Commun. 49, 5793 (2013).

    Article  CAS  Google Scholar 

  11. V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, R.E. Brandt, J.R. Poindexter, Y.S. Lee, L. Sun, A. Polizzotti, H.H. Park, R.G. Gordon, and T. Buonassisi: 3.88% efficient tin sulfide solar cells using congruent thermal evaporation. Adv. Mater. 26, 7488 (2014).

    Article  CAS  Google Scholar 

  12. G. Yue, Y. Lin, X. Wen, L. Wang, and D. Peng: SnS homojunction nanowire-based solar cells. J. Mater. Chem. 22, 16437 (2012).

    Article  CAS  Google Scholar 

  13. T. Rath, L. Gury, I. Sánchez-Molina, L. Martínez, and S.A. Haque: Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells. Chem. Commun. 51, 10198 (2015).

    Article  CAS  Google Scholar 

  14. M. Patel and A. Ray: Magnetron sputtered Cu doped SnS thin films for improved photoelectrochemical and heterojunction solar cells. RSC Adv. 4, 39343 (2014).

    Article  CAS  Google Scholar 

  15. X. Liu and H. Bai: Hydrothermal synthesis of visible light active zinc-doped tin disulfide photocatalyst for the reduction of aqueous Cr(VI). Powder Technol. 237, 610 (2013).

    Article  CAS  Google Scholar 

  16. F. Niknia, F. Jamali-Sheini, and R. Yousefi: Examining the effect of Zn dopant on physical properties of nanostructured SnS thin film by using electrodeposition. J. Appl. Electrochem. 46, 323 (2015).

    Article  Google Scholar 

  17. S.H. Chaki, M.D. Chaudhary, and M.P. Deshpande: Effect of indium and antimony doping in SnS single crystals. Mater. Res. Bull. 63, 173 (2015).

    Article  CAS  Google Scholar 

  18. K.K. Santhosh, C. Manoharan, S. Dhanapandian, A. Gowri Manohari, and T. Mahalingam: Effect of indium incorporation on properties of SnS thin films prepared by spray pyrolysis. Optik—Int. J. Light Electron Opt. 125, 3996 (2014).

    Article  Google Scholar 

  19. M. Reghima, A. Akkari, C. Guasch, and N. Kamoun-Turki: Effect of indium doping on physical properties of nanocrystallized SnS zinc blend thin films grown by chemical bath deposition. J. Renew. Sustain. Energy 4, 011602 (2012).

    Article  Google Scholar 

  20. F. Jamali-Sheini, M. Cheraghizade, and R. Yousefi: SnS nanosheet films deposited via thermal evaporation: the effects of buffer layers on photovoltaic performance. Sol. Energy Mater. Sol. Cells 154, 49 (2016).

    Article  CAS  Google Scholar 

  21. Icdd: The international centre for diffraction data—ICDD—a non-profit scientific organization dedicated to collecting, editing, publishing, and distributing powder diffraction data. In The International Centre for Diffraction Data (The International Centre for Diffraction Data 1997).

    Google Scholar 

  22. M. Wang, J. Zhao, R. Xu, N. Fu, and X. Wang: Preparation and photoluminescence properties of Tm3+-doped ZrO2 nanotube arrays. J. Alloys Compd. 674, 353 (2016).

    Article  CAS  Google Scholar 

  23. S.N. Basahel, T.T. Ali, K. Narasimharao, A.A. Bagabas, and M. Mokhtar: Effect of iron oxide loading on the phase transformation and physicochemical properties of nanosized mesoporous ZrO2. Mater. Res. Bull. 47, 3463 (2012).

    Article  CAS  Google Scholar 

  24. F. Jamali-Sheini, R. Yousefi, N. Ali Bakr, M. Cheraghizade, M. Sookhakian, and N.M. Huang: Highly efficient photo-degradation of methyl blue and band gap shift of SnS nanoparticles under different sonication frequencies. Mater. Sci. Semicond. Process. 32, 172 (2015).

    Article  CAS  Google Scholar 

  25. R.F. Dezfuly, R. Yousefi, and F. Jamali-Sheini: Photocurrent applications of Zn(1-x)CdxO/rGO nanocomposites. Ceram. Int. 42, 7455 (2016).

    Article  CAS  Google Scholar 

  26. C. Jagadish: Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (Elsevier Science, UK, 2006).

    Google Scholar 

  27. M.-S. Kim, B.-G. Kim, and J. Kim: Effective variables to control the fill factor of organic photovoltaic cells. ACS Appl. Mater. Interfaces 1, 1264 (2009).

    Article  CAS  Google Scholar 

  28. Z. Wang, S. Qu, X. Zeng, J. Liu, C. Zhang, F. Tan, and L. Jin: The application of SnS nanoparticles to bulk heterojunction solar cells. J. Alloys Compd. 482, 203 (2009).

    Article  CAS  Google Scholar 

  29. V.R.M. Reddy, S. Gedi, C. Park, R.W. Miles, and R.R. Kt: Development of sulphurized SnS thin film solar cells. Curr. Appl. Phys. 15, 588 (2015).

    Article  Google Scholar 

  30. J.A. Andrade-Arvizu, M. Courel-Piedrahita, and O. Vigil-Galán: SnS-based thin film solar cells: perspectives over the last 25 years. J. Mater. Sci.: Mater. Electron. 26, 4541 (2015).

    CAS  Google Scholar 

  31. B. Subramanian, C. Sanjeeviraja, and M. Jayachandran: Cathodic electrodeposition and analysis of SnS films for photoelectrochemical cells. Mater. Chem. Phys. 71, 40 (2001).

    Article  CAS  Google Scholar 

  32. K.T. Ramakrishna Reddy, P. Pratap, and R.W. Miles: Thin sulphide films for solar photovoltaic application. In Photovoltaics: Developments, Applications and Impact, edited by H. Tanaka and K. Yamashita (Nova Science Publishers Inc., New York, 2010), pp. 37–62.

    Google Scholar 

Download references

Acknowledgment

F. J.-S. and R. Y. gratefully acknowledge Islamic Azad University, Ahvaz and Masjed-Soleiman Branches, respectively, for their financial supporting in this research work. F. J.-S. also acknowledges Advanced Surface Engineering and Nano Materials Research Center, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran, for their instrumentation support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Jamali-Sheini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamali-Sheini, F., Cheraghizade, M., Niknia, F. et al. Enhanced photovoltaic performance of tin sulfide nanoparticles by indium doping. MRS Communications 6, 421–428 (2016). https://doi.org/10.1557/mrc.2016.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.48

Navigation