Skip to main content
Log in

Anodically grown functional oxide nanotubes and applications

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Among various material nanoarchitectures, the nanotube geometry has received incredible attention due to the unique properties provided by its high surface area as well as nanoscale wall thickness and the availability of a variety of techniques to fabricate them. Since the beginning of this century, anodization has emerged as one of the most effective techniques for the fabrication of functional oxide nanotubes. Oxide nanotubes of a number of metals and alloys have been developed using this versatile technique. We review here the research activities on anodic nanotubes of various binary, ternary, and multinary materials and their selected applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Table I
Figure 16
Figure 17

Similar content being viewed by others

References

  1. S.B. Ogale, T.V. Venkatesan, and M.G. Blamire: Functional Metal Oxides: New Science and Novel Applications (Wiley–VCH, Weinheim, Germany, 2013).

    Google Scholar 

  2. S.V. Kalinin and N.A. Spaldin: Functional ion defects in transition metal oxides. Science 341, 858 (2013).

    CAS  Google Scholar 

  3. J.G. Bednorz and K.A. Muller: Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B: Condens. Matter 64, 189 (1986).

    CAS  Google Scholar 

  4. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu: Superconductivity at 93 K in a new mixed phase Y–Ba–Cu–O compound system at ambient pressure. Phys. Rev. Lett. 58, 908 (1987).

    CAS  Google Scholar 

  5. B. O’Regan and M. Gratzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 35, 737 (1991).

    Google Scholar 

  6. M. Liu, M.B. Johnston, and H.J. Snaith: Efficient planar heterojunction perovskite solar cells by vapor deposition. Nature 501, 395 (2013).

    CAS  Google Scholar 

  7. A. Janotti and C.G. Van de Walle: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 2 (2009).

    Google Scholar 

  8. M. Yin, Y. Gu, I.L. Kuskovsky, T. Andelman, Y. Zhu, G.F. Neumark, and S. O’Brien: Zinc oxide quantum rods. J. Am. Chem. Soc. 126, 6206 (2004).

    CAS  Google Scholar 

  9. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).

    CAS  Google Scholar 

  10. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005).

    CAS  Google Scholar 

  11. J. Bao, M.A. Zimmler, F. Capasso, X. Wang, and Z.F. Ren: Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 6, 1719 (2006).

    CAS  Google Scholar 

  12. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, and D. Wang: ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003 (2007).

    CAS  Google Scholar 

  13. Z.L. Wang and J. Song: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).

    CAS  Google Scholar 

  14. M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, and K.G. Ong: Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 17, 398 (2006).

    CAS  Google Scholar 

  15. O.K. Varghese, M. Paulose, and C.A. Grimes: Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 4, 592 (2009).

    CAS  Google Scholar 

  16. O.K. Varghese, M. Paulose, T.J. LaTempa, and C.A. Grimes: High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731–737 (2009).

    CAS  Google Scholar 

  17. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li: Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690 (2012).

    CAS  Google Scholar 

  18. K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, and C.A. Grimes: Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 (2007).

    Google Scholar 

  19. M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, and C.A. Grimes: TiO2 nanotube arrays of 1000 µm length by anodization of titanium foil: phenol red diffusion. J. Phys. Chem. C 111, 14992 (2007).

    CAS  Google Scholar 

  20. H. Buff: Ueber das electrische Verhalten des Aluminiums. Justus Liebigs Annalen der Chemie 102, 265 (1857).

    Google Scholar 

  21. T. Kujirai and S. Ueki: Process of coating metallic aluminum or aluminum alloys with aluminum oxide skin. United States Patent No. 1735286 (1923).

    Google Scholar 

  22. L. Lerner: History of aluminum hard coating. Aluminium Int. Today. 16, 33 (2004).

    Google Scholar 

  23. H. Masuda and K. Fukuda: Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).

    CAS  Google Scholar 

  24. T.P. Hoar and N.F. Mott: A mechanism for the formation of porous anodic oxide films on aluminum. J. Phys. Chem. Solids 9, 97 (1959).

    CAS  Google Scholar 

  25. J.P. O’Sullivan and G.C. Wood: The morphology and mechanism of formation of porous anodic films on aluminum. Proc. R. Soc. Lond. A 317, 511 (1970).

    Google Scholar 

  26. W. Lee and S.J. Park: Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 25, 1258 (2000).

    Google Scholar 

  27. V.P. Parkhutik and V.I. Shershulsky: Theoretical modelling of porous oxide growth on aluminum. J. Phys. D: Appl. Phys. 25, 1258 (2000).

    Google Scholar 

  28. P. Skeldon, G.E. Thompson, S.J. Garcia-Vargara, L. Iglesias-Rubianes, and C.E. Blanco-Pinzon: A tracer study of porous anodic alumina. Electrochem. Solid-State Lett. 9, B47 (2006).

    CAS  Google Scholar 

  29. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, and H. Habazaki: A flow model of porous anodic film growth on aluminum. Electrohim. Acta 52, 681 (2006).

    CAS  Google Scholar 

  30. J.E. Houser and K.R. Hebert: The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nat. Mater. 8, 415 (2009).

    CAS  Google Scholar 

  31. L. Pu, X. Bao, J. Zou, and D. Feng: Individual alumina nanotubes. Angew. Chem. Int. Ed. Engl. 40, 1490 (2001).

    CAS  Google Scholar 

  32. G.K. Mor, O.K. Varghese, M. Paulose, N. Mukherjee, and C.A. Grimes: Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 18, 2588 (2003).

    CAS  Google Scholar 

  33. D. Regonini, C.R. Bowen, A. Jaroenworaluck, and R. Stevens: A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R 74, 377 (2013).

    Google Scholar 

  34. Z. Su and W. Zhou: Formation mechanism of porous anodic aluminium and titanium oxides. Adv. Mater. 20, 3663 (2008).

    CAS  Google Scholar 

  35. S. Berger, S.P. Albu, F. Schmidt-Stein, H. Hildebrand, P. Schmuki, J.S. Hammond, D.F. Paul, and S. Reichlmaier: The origin of tubular growth of TiO2 nanotubes: a fluoride rich layer between tub-walls. Surf. Sci. 605, L57 (2011).

    CAS  Google Scholar 

  36. G. Katwal, M. Paulose, I.A. Rusakova, J.E. Martinez, and O.K. Varghese: Rapid growth of zinc oxide nanotube-nanowire hybrid architectures and their use in breast cancer-related volatile organics detection. Nano Lett. 11, 3014 (2016).

    Google Scholar 

  37. J.P. Zou, L. Pu, X.M. Bao, and D. Feng: Branchy alumina nanotubes. Appl. Phys. Lett. 80, 1079 (2002).

    CAS  Google Scholar 

  38. W. Lee, R. Scholz, and U. Gosele: A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum. Nano Lett. 8, 2155 (2008).

    CAS  Google Scholar 

  39. Y. Wang, A. Santos, A. Evdokiou, and D. Losic: Rational design of ultra-short anodic alumina nanotubes by short-time pulse anodization. Electrochim. Acta 154, 379 (2015).

    CAS  Google Scholar 

  40. Y. Wang, G. Kaur, Y. Chen, A. Santos, D. Losic, and A. Evdokiou: Bioinert anodic alumina nanotubes for targeting of endoplasmic reticulum stress and autophagic signaling: a combinatorial nanotube-based drug delivery system for enhancing cancer therapy. ACS Appl. Mater. Interfaces 7, 27140 (2015).

    CAS  Google Scholar 

  41. C.S. Law, A. Santos, M. Nemati, and D. Losic: Structural engineering of nanoporous anodic alumina photonic crystals by sawtooth-like pulse anodization. ACS Appl. Mater. Interfaces 8, 13542 (2016).

    CAS  Google Scholar 

  42. M. Assefpour-Dezfuly, C. Vlachos, and E.H. Andrews: Oxide morphology and adhesive bonding on titanium surfaces. J. Mater Sci. 19, 3626 (1984).

    CAS  Google Scholar 

  43. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, and M. Aucouturier: Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf. Interface Anal. 27, 629 (1999).

    CAS  Google Scholar 

  44. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, and E.C. Dickey: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).

    CAS  Google Scholar 

  45. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, and C.A. Grimes: Hydrogen sensing using titania nanotubes. Sens. Actuators B 93, 338 (2003).

    CAS  Google Scholar 

  46. O.K. Varghese, D.W. Gong, M. Paulose, C.A. Grimes, and E.C. Dickey: Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J. Mater. Res. 18, 156 (2003).

    CAS  Google Scholar 

  47. R. Beranek, H. Hildebrand, and P. Schmuki: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 6, B12 (2003).

    CAS  Google Scholar 

  48. C. Richter, E. Panaitescu, R. Willey, and L. Menon: Titania nanotubes prepared by anodization in fluorine-free acids. J. Mater. Res. 22, 1624 (2007).

    CAS  Google Scholar 

  49. S. Rani, S.C. Roy, M. Paulose, O.K. Varghese, G.K. Mor, S. Kim, S. Yoriya, T.J. LaTempa, and C.A. Grimes: Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys. 12, 2780 (2010).

    CAS  Google Scholar 

  50. Q.Y. Cai, M. Paulose, O.K. Varghese, and C.A. Grimes: The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230 (2005).

    CAS  Google Scholar 

  51. M. Paulose, O.K. Varghese, K. Shankar, G.K. Mor, and C.A. Grimes: Photoelectrochemical properties of highly-ordered titania nanotube-arrays. Mater. Res. Soc. Symp. Proc. 837, N3.13.1 (2005).

    Google Scholar 

  52. J.M. Macak, K. Sirotna, and P. Schmuki: Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim. Acta 50, 3679 (2005).

    CAS  Google Scholar 

  53. M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, and C.A. Grimes: Application of highly-ordered TiO2 nanotube-arrays in dye-sensitized solar cells. J. Phys. D: Appl. Phys. 39, 2498 (2006).

    CAS  Google Scholar 

  54. C.M. Ruan, M. Paulose, O.K. Varghese, G.K. Mor, and C.A. Grimes: Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J. Phys. Chem. B 109, 15754 (2005).

    CAS  Google Scholar 

  55. J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki: Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. Engl. 44, 7463 (2005).

    CAS  Google Scholar 

  56. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, and C.A. Grimes: Anodic growth of highly ordered TiO2 nanotube arrays to 134 µm in length. J. Phys. Chem. 110, 16179 (2006).

    CAS  Google Scholar 

  57. H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes: A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 111, 7235 (2007).

    CAS  Google Scholar 

  58. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, and C.A. Grimes: Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624 (2003).

    CAS  Google Scholar 

  59. G.K. Mor, O.K. Varghese, M. Paulose, and C.A. Grimes: A self-cleaning, room temperature titania-nanotube hydrogen gas sensor. Sens. Lett. 1, 42 (2003).

    CAS  Google Scholar 

  60. O.K. Varghese, X. Yang, J. Kendig, M. Paulose, K. Zeng, C. Palmer, K.G. Ong, and C.A. Grimes: A transcutaneous hydrogen sensor: from design to application. Sens. Lett. 4, 120 (2006).

    CAS  Google Scholar 

  61. P. Qin, M. Paulose, M. Ibrahim Dar, T. Moehl, N. Arora, P. Gao, O.K. Varghese, M. Gratzel and M.K. Nazeeruddin: Stable and efficient perovskite solar cells based on titania nanotube arrays. Small 11, 5533 (2015).

    CAS  Google Scholar 

  62. H. Brahmi, G. Katwal, M. Khodadadi, S. Chen, M. Paulose, O.K. Varghese, and A. Mavrokefalos: Thermal-structural relationship of individual titania nanotubes. Nanoscale 7, 19004 (2015).

    CAS  Google Scholar 

  63. G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, and C.A. Grimes: A room-temperature TiO2 nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).

    CAS  Google Scholar 

  64. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191 (2005).

    CAS  Google Scholar 

  65. O.K. Varghese, M. Paulose, K. Shankar, G.K. Mor, and C.A. Grimes: Water-photoelectrolysis properties of highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 5, 1158 (2005).

    CAS  Google Scholar 

  66. K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X. Feng, M. Paulose, J.A. Seabold, K.S. Choi, and C.A. Grimes: Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C 113, 6327 (2009).

    CAS  Google Scholar 

  67. O.K. Varghese and C.A. Grimes: Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: a review with examples using titania nanotube array photoanodes. Sol. Energy Mater. Sol. Cells 92, 374 (2008).

    CAS  Google Scholar 

  68. M. Paulose, G.K. Mor, O.K. Varghese, K. Shankar, and C.A. Grimes: Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J. Photochem. Photobiol. A: Chem. 178, 8 (2006).

    CAS  Google Scholar 

  69. N. Liu, V. Haublein, X. Zhou, U. Venkatesan, M. Hartmann, M. Mackovic, T. Nakajima, E. Spiecker, A. Osvet, L. Frey, and P. Schmuki: ‘Black’ TiO2 nanotubes formed by high energy proton implantation show noble-metal-co-catalyst free photocatalytic H2-evolution. Nano Lett. 15, 16179 (2006).

    Google Scholar 

  70. G.K. Mor, O.K. Varghese, M. Paulose, and C.A. Grimes: Transparent highly-ordered TiO2 nanotube-arrays via anodization of titanium thin films. Adv. Funct. Mater. 15, 1291 (2005).

    CAS  Google Scholar 

  71. D. Liu, P. Xiao, Y. Zhang, B.B. Garcia, Q. Zhang, Q. Guo, R. Champion, and G. Cao: TiO2 nanotube arrays annealed in N2 for efficient lithium-ion intercalation. J. Phys. Chem. C 112, 11177 (2008).

    Google Scholar 

  72. K.S. Brammer, C.J. Frandsen, and S. Jin: TiO2 nanotubes for bone regeneration. Trends Biotechnol. 30, 315 (2012).

    CAS  Google Scholar 

  73. K.C. Popat, L. Leoni, C.A. Grimes, and T.A. Desai: Influence of engineered titania nanotublar surfaces on bone cells. Biomaterials 28, 3188 (2007).

    CAS  Google Scholar 

  74. A.B. Wijeratne, D.N. Wijesundera, M. Paulose, I.B. Ahiabu, W.K. Chu, O.K. Varghese, and K.D. Greis: Phosphopeptide separation using radially aligned titania nanotubes on titanium wire. ACS Appl. Mater. Interfaces 7, 11155 (2015).

    CAS  Google Scholar 

  75. J. Chevalier and L. Gremillard: Ceramics for medical applications: a picture for the next 20 years. J. Euro. Ceram. Soc. 29, 1245 (2009).

    CAS  Google Scholar 

  76. H. Tsuchiya and P. Schmuki: Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes. Electrochem. Commun. 6, 1131 (2004).

    CAS  Google Scholar 

  77. W.J. Lee and W.H. Smyrl: Zirconium oxide nanotubes synthesized via direct electrochemical anodization. Electrochem. Solid-State Lett. 8, B7 (2005).

    CAS  Google Scholar 

  78. H. Tsuchiya, J.M. Macak, L. Taveira, and P. Schmuki: Fabrication and characterization of smooth high aspect ration zirconia nanotubes. Chem. Phys. Lett. 410, 188 (2005).

    CAS  Google Scholar 

  79. W. Jiang, J. He, H. Zhong, J. Lu, S. Yuan, and B. Liang: Preparation and photocatalytic performance of ZrO2 nanotubes fabricated with anodization process. Appl. Surf. Sci. 307, 407 (2014).

    CAS  Google Scholar 

  80. C. Nico, T. Monteiro, and M.P.F. Graca: Niobium oxides and niobates physical properties: review and prospects. Progr. Mater. Sci. 80, 1 (2016).

    CAS  Google Scholar 

  81. I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki: Formation of sel-organized niobium porous oxide on niobium. Electrochem. Commun. 7, 97 (2005).

    CAS  Google Scholar 

  82. J. Choi, J.H. Lim, S.C. Lee, J.H. Chang, K.J. Kim, and M.A. Cho: Porous niobium oxide films prepared by anodization in HF/H3PO4. Electrochim. Acta 51, 5502 (2006).

    CAS  Google Scholar 

  83. W. Wei, K. Lee, S. Shaw, and P. Schmuki: Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes. Chem. Commun. 48, 4244 (2012).

    CAS  Google Scholar 

  84. V. Galstyan, E. Comini, G. Faglia, and G. Sberveglieri: Synthesis of self-ordered and well-aligned Nb2O5 nanotubes. CrystEngComm 16, 10273 (2014).

    CAS  Google Scholar 

  85. X. Liu, R. Yuan, Y. Liu, S. Zhu, J. Lin, and X. Chen: Niobium pentoxide nanotube powder for efficient dye-sensitized solar cells. New J. Chem. 40, 6276–6280 (2016).

    CAS  Google Scholar 

  86. H. Tsuchiya and P. Schmuki: Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization. Electrochem. Commun. 7, 49 (2005).

    CAS  Google Scholar 

  87. S. Berger, F. Jakubka, and P. Schmuki: Self-ordered hexagonal nanoporous hafnium oxide and transition to aligned HfO2 nanotube layers. Electrochem. Solid-State Lett. 12, K45 (2009).

    CAS  Google Scholar 

  88. X. Qiu, J.Y. Howe, M.B. Cardoso, O. Polat, W.T. Heller, and M.P. Paranthaman: Size control of highly ordered HfO2 nanotube arrays and a possible growth mechanism. Nanotechnology 20, 455601 (2009).

    Google Scholar 

  89. X. Qiu, J.Y. Howe, H.M. Meyer, E. Tuncer, and M.P. Paranthaman: Thermal stability of HfO2 nanotube arrays. Appl. Surf. Sci. 257, 4075 (2011).

    CAS  Google Scholar 

  90. X. Wu, H. Bai, J. Zhang, F. Chen, and G. Shi: Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper. J. Phys. Chem. B 109, 22836 (2005).

    CAS  Google Scholar 

  91. L. Xu, Q. Yang, X. Liu, J. Liu, and X. Sun: One-dimensional copper oxide nanotube arrays: biosensors for glucose detection. RSC Adv. 4, 1449 (2014).

    CAS  Google Scholar 

  92. H.E. Prakasam, O.K. Varghese, M. Paulose, G.K. Mor, and C.A. Grimes: Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization. Nanotechnology 17, 4285 (2006).

    CAS  Google Scholar 

  93. R.R. Rangaraju, K.S. Raja, A. Panday, and M. Misra: An investigation on room temperature synthesis of vertically oriented arrays of iron oxide nanotubes by anodization of iron. Electrochim. Acta 55, 785 (2010).

    CAS  Google Scholar 

  94. T.J. LaTempa, X. Feng, M. Paulose, and C.A. Grimes: Temperature-dependent growth of self-assembled hematite (a-Fe2O3) nanotube arrays: rapid electrochemical synthesis and photoelectrochemical properties. J. Phys. Chem. 113, 16293 (2009).

    CAS  Google Scholar 

  95. C.Y. Lee, L. Wang, Y. Kado, M.S. Killian, and P. Schmuki: Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity. ChemSusChem 7, 934 (2014).

    CAS  Google Scholar 

  96. R. Schrebler, L.A. Ballesteros, H. Gómez, P. Grez, R. Córdova, E. Muñoz, R. Schrebler, J.R. Ramos-Barrado, and E.A. Dalchiele: Electrochemically grown self-organized hematite nanotube arrays for photoelectrochemical water splitting. J. Electrochem. Soc. 161, 903 (2014).

    Google Scholar 

  97. I. Sieber, B. Kannan, and P. Schmuki: Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 8, J10 (2005).

    CAS  Google Scholar 

  98. N.K. Allam, X.J. Feng, and C.A. Grimes: Self-assembled fabrication of vertically oritented Ta2O5 nanotube arrays and membranes thereof, by one-step tantalum anodization. Chem. Mater. 20, 6477 (2008).

    CAS  Google Scholar 

  99. H.A. El-Sayed and V.I. Birss: Controlled interconversion of nanoarray of Ta dimples and high aspect ratio Ta oxide nanotubes. Nano Lett. 9, 1350 (2009).

    CAS  Google Scholar 

  100. R.V. Goncalves, P. Migowski, H. Wender, D. Eberhardt, D.W. Weibel, F.C. Sonaglio, M.J.M. Zapata, J. Dupont, A.F. Feil, and S.R. Teixeira: Ta2O5 nanotubes obtained by anodization: effect of thermal treatment on the photocatalytic activity for hydrogen production. J. Phys. Chem. C 116, 14022 (2012).

    CAS  Google Scholar 

  101. Y. Yang, S.P. Albu, D. Kim, and P. Schmuki: Enabling the anodic growth of highly ordered V2O5 nanoporous/nanotubular structures. Angew. Chem. Int. Ed. Engl. 50, 9071 (2011).

    CAS  Google Scholar 

  102. Y. Yang, K. Lee, M. Zobel, M. Mackovic, T. Unruh, E. Spiecker, and P. Schmuki: Formation of highly ordered VO2 nanotubular/nanoporous layers and their supercooling effect in phase transitions. Adv. Mater. 24, 1571 (2012).

    CAS  Google Scholar 

  103. S.K. Deb: A novel electrophotographic system. Appl. Opt. 8, 192 (1969).

    Google Scholar 

  104. Y. Wang, E.L. Runnerstrom, and D.J. Milliron: Switchable materials for smart windows. Annu. Rev. Chem. Biomol. Eng. 7, 283 (2016).

    Google Scholar 

  105. N. Mukherjee, M. Paulose, O.K. Varghese, G.K. Mor, and C.A. Grimes: Fabrication of nanoporous tungsten oxide by galvanostatic anodization. J. Mater. Res. 18, 2296 (2003).

    CAS  Google Scholar 

  106. C.W. Lai, S.B.A. Hamid, and S. Sreekantan: A novel solar driven photocatalyst: well-aligned anodic WO3 nanotubes. Int. J. Photoenergy 2013, 745301 (2013).

    Google Scholar 

  107. N.K. Shrestha, K. Lee, R. Hahn, and P. Schmuki: Anodic growth of hierarchically structured nanotubular ZnO architectures on zinc surfaces using a sulfide based electrolyte. Electrochem. Commun. 34, 9 (2013).

    CAS  Google Scholar 

  108. X.F. Wu, G.W. Lu, C. Li, and G.Q. Shi: Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil. Nanotechnology 19, 4936 (2006).

    Google Scholar 

  109. D.O. Miles, P.J. Cameron, and D. Mattia: Hierarchical 3D ZnO nanowire structures via fast anodization of zinc. J. Mater. Chem. A 3, 17569 (2015).

    CAS  Google Scholar 

  110. Z. Hu, Q. Chen, Z. Li, Y. Yu, and L.M. Peng: Large-scale and rapid synthesis of ultralong ZnO nanowire films via anodization. J. Phys. Chem. C 114, 881 (2010).

    CAS  Google Scholar 

  111. G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, and C.A. Grimes: Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett. 7, 2356 (2007).

    CAS  Google Scholar 

  112. P. Agarwal, I. Paramasivam, N.K. Shrestha, and P. Schmuki: MoO3 in self-organized TiO2 Nanotubes for Enhanced Photocatalytic Activity. Chem. Asian J. 5, 66 (2010).

    CAS  Google Scholar 

  113. N.K. Allam, N.M. Deyabab, and N.A. Ghanyb: Ternary Ti–Mo–Ni mixed oxide nanotube arrays as photoanode materials for efficient solar hydrogen production. Phys. Chem. Chem. Phys. 15, 12274 (2013).

    CAS  Google Scholar 

  114. Y.C. Nah, A. Ghicov, D. Kim, S. Berger, and P. Schmuki: TiO2–WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. J. Am. Chem. Soc. 130, 16154 (2008).

    CAS  Google Scholar 

  115. S.K. Mohapatra, K.S. Raja, M. Misra, V.K. Mahajan, and M. Ahmadian: Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti–8Mn alloy. Electrochim. Acta 53, 590 (2007).

    CAS  Google Scholar 

  116. Y. Yang, D. Kim, M. Yang, and P. Schmuki: Vertically aligned mixed V2O5–TiO2 nanotube arrays for supercapacitor applications. Chem. Commun. 47, 7746 (2011).

    CAS  Google Scholar 

  117. J.H. Kim, K. Zhu, Y. Yan, C.L. Perkins, and A.J. Frank: Microstructure and pseudo capacitive properties of electrodes constructed of oriented NiO–TiO2 nanotube arrays. Nano Lett. 10, 4099 (2010).

    CAS  Google Scholar 

  118. R. Hang, Y. Liu, L. Zhao, A. Gao, L. Bail, X. Huang, X. Zhang, B. Tang, and P.K. Chu: Fabrication of Ni–Ti–O nanotube arrays by anodization of NiTi alloy and their potential applications. Sci. Rep. 4, 7547 (2014).

    CAS  Google Scholar 

  119. G.K. Mor, O.K. Varghese, R.H.T. Wilke, S. Sharma, K. Shankar, T.J. Latempa, K. Choi, and C.A. Grimes: p-Type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett. 8, 1906 (2008).

    CAS  Google Scholar 

  120. R. Hang, A. Gao, X. Huang, X. Wang, X. Zhang, L. Qin, and B. Tang: Antibacterial activity and cytocompatibility of Cu–Ti–O nanotubes. J. Biomed. Mater. Res. A. 102, 1850 (2014).

    Google Scholar 

  121. P. Roy, C. Das, K. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki: Oxide nanotubes on Ti–Ru Alloys: strongly enhanced and stable photoelectrochemical activity for water splitting. J. Am. Chem. Soc. 133, 5629 (2011).

    CAS  Google Scholar 

  122. H. Tsuchiya, T. Akaki, J. Nakata, D. Terada, N. Tsuji, Y. Koizumi, Y. Minamino, P. Schmuki, and S. Fujimoto: Anodic oxide nanotube layers on Ti–Ta alloys: substrate composition, microstructure and self-organization on two-size scales. Corros. Sci. 51, 1528 (2009).

    CAS  Google Scholar 

  123. W.G. Kim, H.C. Choe, Y.M. Ko, and W.A. Brantley: Nanotube morphology changes for Ti–Zr alloys as Zr content increases. Thin Solid Films 517, 5033 (2009).

    CAS  Google Scholar 

  124. K. Yasuda and P. Schmuki: Formation of self-organized zirconium titanate nanotube layers by alloy anodization. Adv. Mater. 19, 1757 (2007).

    CAS  Google Scholar 

  125. S.H. Jang, H.C. Choe, Y.M. Ko, and W.A. Brantley: Electrochemical characteristics of nanotubes formed on Ti–Nb alloys. Thin Solid Films 517, 5038 (2009).

    CAS  Google Scholar 

  126. A. Ghicov, S. Aldabergenova, H. Tsuchyia, and P. Schmuki: TiO2–Nb2O5 nanotubes with electrochemically tunable morphologies. Angew. Chem. Int. Ed. Engl. 45, 6993 (2006).

    CAS  Google Scholar 

  127. Z. Xu, Q. Li, S. Gao, and J. Shang: Synthesis and characterization of niobium-doped TiO2 nanotube arrays by anodization of Ti–20Nb alloys. J. Mater. Sci. Technol. 28, 865 (2012).

    CAS  Google Scholar 

  128. J.U. Kim, Y.H. Jeong, and H.C. Choe: Morphology of hydroxyapatite coated nanotube surface of Ti–35Nb–xHf alloys for implant materials. Thin Solid Films 520, 793 (2011).

    CAS  Google Scholar 

  129. V.S. Saji, H.C. Choe, and W.A. Brantley: Nanotubular oxide layer formation on Ti–13Nb–13Zr alloy as a function of applied potential. J. Mater. Sci. 44, 3975 (2009).

    CAS  Google Scholar 

  130. X.J. Feng, J.M. Macak, S.P. Albu, and P. Schmuki: Electrochemical formation of self-organized anodic nanotube coating on Ti–28Zr–8Nb biomedical alloy surface. Acta Biomater. 4, 318 (2008).

    CAS  Google Scholar 

  131. H. Tsuchiya, J.M. Macak, A. Ghicov, and P. Schmuki: Self-organization of anodic nanotubes on two size scales. Small 2, 888 (2006).

    CAS  Google Scholar 

  132. V.S. Saji, H.C. Choe, and W.A. Brantley: An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti–35Nb–5Ta–7Zr alloy for biomedical applications. Acta Biomater. 5, 2303 (2009).

    CAS  Google Scholar 

  133. Y.Q. Liang, Z.D. Cui, S.L. Zhu, and X.J. Yang: Characterization of self-organized TiO2 nanotubeson Ti–4Zr–22Nb–2Sn alloys and the application in drug delivery system. J. Mater. Sci: Mater. Med. 22, 461 (2011).

    CAS  Google Scholar 

  134. G. Ali, Y.J. Park, H.J. Kim, and S.O. Cho: Formation of self-organized Zircaloy-4 oxide nanotubes in organic viscous electrolyte via anodization. Nanoscale Res. Lett. 9, 553 (2014).

    Google Scholar 

  135. J.M. Macak, H. Tsuchiya, L. Taveira, A. Ghicov, and P. Schmuki: Self-organized nanotubular oxide layers on Ti–6Al–7Nb and Ti–6Al–4V formed by anodization in NH4F solutions. J. Biomed. Mater. Res. A 75A, 928 (2005).

    CAS  Google Scholar 

  136. J. Zhao, X. Wang, R. Chen, and L. Li: Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates. Mater. Lett. 59, 2329 (2005).

    CAS  Google Scholar 

  137. Y. Xin, J. Jiang, K. Huo, T. Hu, and P.K. Chu: Bioactive SrTiO3 nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants. ACS Nano 3, 3228 (2009).

    CAS  Google Scholar 

  138. X. Feng, T.J. LaTempa, J.I. Basham, G.K. Mor, O.K. Varghese, and C.A. Grimes: Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett. 10, 948 (2010).

    CAS  Google Scholar 

  139. Z. Su, S. Grigorescu, L. Wang, K. Lee and P. Schmuki: Fast fabrication of Ta2O5 nanotube arrays and their conversion to Ta3N5 for efficient solar driven water splitting. Electrochem. Commun. 50, 15 (2015).

    CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Shell International Exploration and Production Inc. for the financial support for developing the nanotube architecture for solar fuel generation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oomman K. Varghese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, B.M., Torabi, A. & Varghese, O.K. Anodically grown functional oxide nanotubes and applications. MRS Communications 6, 375–396 (2016). https://doi.org/10.1557/mrc.2016.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.46

Navigation