Skip to main content
Log in

Empirical relation between Pauling electronegativity and self-energy cutoffs in local-density approximation-1/2 quasi-particle approach applied to the calculation of band gaps of binary compound semiconductors

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The local-density approximation (LDA)-1/2 technique has been successfully applied to surmount current limitations in density-functional theory to determine excited-states properties of solids via LDAs to the exchange-correlation functional. The main task to properly apply this technique is to choose the “cut-off” radius to truncate the long-ranged self-energy function, originated by the procedure of removing the spurious self-energy of electrons (and/or holes). The usual procedure is by choosing an extreme of the variation of the band gap as a function of this cutoff. This work examines the relationship between that cut-off parameter and the electronegativity difference between cation and anion in binary compounds calculated self-consistently with LDA-1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J. Piprek: Blue light emitting diode exceeding 100% quantum efficiency. Phys. Status Solidi - Rapid Res. Lett. 8, 424 (2014).

    Article  CAS  Google Scholar 

  2. T. Li, M. Mastro and A. Dadgar: III-V Compound Semiconductors: Integration with Silicon-Based Microelectronics (CRC Press, New York, 2011).

    Google Scholar 

  3. T.T. Vu ed.: Compound Semiconductor Integrated Circuits (World Scientific, New Jersey, London, Singapore, Hong Kong, 2003).

    Book  Google Scholar 

  4. S. Mokkapati and C. Jagadish: III-V compound SC for optoelectronic devices. Mater. Today 12, 22 (2009).

    Article  CAS  Google Scholar 

  5. A.C. Jones and P. O’Brien: CVD of Compound Semiconductors: Precursor Synthesis, Development and Applications (VCH Ve rlagsg esel Ischaft mbH, Weinheim, New York, Basel, Cambridge, Tokyo, 1997).

    Book  Google Scholar 

  6. O. Moutanabbir and U. Gösele: Heterogeneous integration of compound semiconductors. Annu. Rev. Mater. Res. 40, 469 (2010).

    Article  CAS  Google Scholar 

  7. P. Hohenberg and W. Kohn: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  8. W. Kohn and L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  9. G.E. Scuseria and V.N. Staroverov: Progress in the development of exchange-correlation functional. In Theory and Applications of Computational Chemistry - the First Forty Years, edited by Clifford E. Dykstra, Gernot Frenking, Kwang S. Kim and Gustavo E. Scuseria (Elsevier, 2005), chap. 24.

    Google Scholar 

  10. E.C.F. Da Silva, T. Dietl, W.D. Dobrowolski, J. Gutowski, B. Hbnerlage, F. Matsukura, B.K. Meyer, H. Ohno, K. Sebald, T. Story, D. Strauch and T. Voss: In New Data and Updates for IV-IV, III-V, II-VI, I-VII Compounds, their Mixed Crystals and Diluted Magnetic, edited by U. Rbssler, Nandolt-Bbrnstein - Numerical Data and Functional Relationships in Science and Technology, Group III, Volume 44 - Condensed Matter, Subvolume D (Springer, Berlin-Heildelberg-New York, 2011).

    Google Scholar 

  11. R.O. Jones: Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897 (2015).

    Article  Google Scholar 

  12. C. Fiolhais, F. Nogueira and M. Marques ed.: A Primer in Density Functional Theory, 1st ed. (Springer, New York, 2002).

    Google Scholar 

  13. J.P. Perdew and M. Levy: Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. Phys. Rev. Lett 51, 1881 (1983).

    Article  Google Scholar 

  14. L.J. Sham and M. Schlüter: Density-functional theory of the energy gap. Phys. Rev. Lett. 51, 1888 (1983).

    Article  Google Scholar 

  15. G. Onida, L. Reining and A. Rubio: Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601 (2002).

    Article  CAS  Google Scholar 

  16. A.J. Cohen, P. Mori-Sanchez and W. Yang: Insights into current limitations of density functional theory. Science 321, 792 (2008).

    Article  CAS  Google Scholar 

  17. L.G. Ferreira, M. Marques and L. Teles: Approximation to density functional theory for the calculation of band gaps of semiconductors. Phys Rev. B 78, 125116 (2008).

    Article  Google Scholar 

  18. J.F. Janak: Proof that ∂E/∂ni = ε in density-functional theory. Phys. Rev. B 18, 7165 (1978).

    Article  CAS  Google Scholar 

  19. J.C. Slater and K.H. Johnson: Self-consistent-field Xa cluster method for polyatomic molecules and solids. Phys. Rev. B 5, 844 (1972).

    Google Scholar 

  20. M. Ribeiro Jr., L.R.C. Fonseca and L.G. Ferreira: Accurate prediction of the Si/SiO2 interface band offset using the self-consistent ab initio DFT/LDA-1/2 method. Phys. Rev. B (Rapid Commun.) 79, 241312 (2009).

    Article  Google Scholar 

  21. J. Harris: Simplified method for calculating the energy of weakly interacting fragments. Phys. Rev. B 31, 1770 (1985).

    Article  CAS  Google Scholar 

  22. M. Ribeiro Jr., L. Fonseca and L.G. Ferreira: First-principles calculation of the AlAs/GaAs interface band structure using a self-energy-corrected local density approximation. Europhys. Lett. 94, 27001 (2011).

    Article  Google Scholar 

  23. M. Ribeiro Jr. and S. Shevlin: Self-energy corrected ab initio simulation of the photo-catalytic material nitrogen doped rutile TiO2. Sci. Adv. Mater. 7, 623–630 (2015).

    Article  CAS  Google Scholar 

  24. M. Ribeiro Jr., L.G. Ferreira, L.R.C. Fonseca and R. Ramprasad: CdSe/ CdTe interface band gaps and band offsets calculated using spin-orbit and self-energy corrections. Mater. Sci. Eng. B 177, 1460–1464 (2012).

    Article  CAS  Google Scholar 

  25. M. Ribeiro Jr.: Ab initio quasi-particle approximation bandgaps of silicon nanowires calculated at density functional theory/local density approximation computational effort. J. Appl. Phys. 117, 234302 (2015).

    Article  Google Scholar 

  26. M. Ribeiro Jr.: Ab initio energy gap calculations of ZnO nanowires based on LDA-1/2 approach. Nanosci. Nanotechnol. -Asia 4, 124 (2014).

    Article  CAS  Google Scholar 

  27. M. Ribeiro Jr. and M. Marques: Theoretical study of InN/GaN short period superlattices to mimic disordered alloys. J. Appl. Phys. 115, 223708 (2014).

    Article  Google Scholar 

  28. M. Ribeiro Jr.: Quasiparticle theoretical characterization of electronic and optical properties of the photocatalytic material Ti3_δO4N. J. Mater. Res. 30, 2934 (2015).

    Article  CAS  Google Scholar 

  29. M. Ribeiro Jr.: Application of the GGA-1/2 excited-state correction method to p-electron defective states: the special case of nitrogen-doped TiO2. Can. J. Phys. 93, 261 (2015).

    Article  CAS  Google Scholar 

  30. S. Kiifner, A. Schleife, B. Hbffling and F. Bechstedt: Energetics and approximate quasiparticle electronic structure of low-index surfaces of SnO2. Phys. Rev. B 86, 075320 (2012).

    Article  Google Scholar 

  31. G. Kresse and J. Furthmijller: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  32. G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  33. D.M. Ceperley and B.J. Alder: Ground state of the electron gas by a Stochastic method. Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  34. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev.B 13, 5188 (1976).

    Article  Google Scholar 

  35. L. Pauling: Nature of the Chemical Bond (Cornell University Press, New York, 1960), p. 99.

    Google Scholar 

Download references

Acknowledgment

Part of this work was done with the computational resources of the High Performance Computing laboratory of the University of Sao Paulo. To Walter Kohn (in memoriam).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maura Ribeiro Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, M. Empirical relation between Pauling electronegativity and self-energy cutoffs in local-density approximation-1/2 quasi-particle approach applied to the calculation of band gaps of binary compound semiconductors. MRS Communications 6, 99–103 (2016). https://doi.org/10.1557/mrc.2016.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.16

Navigation