Skip to main content
Log in

Fabricating high refractive index titanium dioxide film using electron beam evaporation for all-dielectric metasurfaces

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Transparent high refractive index materials are of the central importance for the development of metasurface in visible range. Titanium dioxide (TiO2) has been considered as a perfect candidate due to its wide band gap and high refractive index. However, till now, it is still quite challenging to fabricate high-quality TiO2 films with high refractive indices and low losses. Here we demonstrate the fabrication of high-quality TiO2film using an electron-beam evaporation method. We show that the post-annealing conditions play key roles in the microstructure crystallography and the optical refractive index of the TiO2 films. A predominately oriented TiO2 film has been achieved by annealing at 700 °C in oxygen ambient. The refractive index is as high as 2.4, and the corresponding loss is negligible at 632 nm. Further studies on dielectric antennas show that our TiO2 film can be an ideal platform to fabricate metasurface in visible frequency range. We believe that our research will be important for the advances of all-dielectric metasurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. N. Yu and F. Capasso: Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  CAS  Google Scholar 

  2. A.V. Kildishev, A. Boltasseva, and V.M. Shalaev: Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  3. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, and Z. Gaburro: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  CAS  Google Scholar 

  4. X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, and V.M. Shalaev: Broadband light bending with plasmonic nanoantennas. Science 335, 427–427 (2012).

    Article  CAS  Google Scholar 

  5. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou: Gradient-index metasurfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426–431 (2012).

    Article  CAS  Google Scholar 

  6. S. Larouche, Y.J. Tsai, T. Tyler, N.M. Jokerst, and D.R. Smith: Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012).

    Article  CAS  Google Scholar 

  7. L. Huang, X. Chen, H. Muhlenbernd, H. Zhang, S. Chen, B. Bai, and S. Zhang: Three-dimensional optical holography using a plasmonic meta-surface. Nat. Commun. 4, 2808 (2013).

    Article  Google Scholar 

  8. F. Aieta, P. Genevet, M.A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso: Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012).

    Article  CAS  Google Scholar 

  9. A. Pors, M.G. Nielsen, R.L. Eriksen, and S.I. Bozhevolnyi: Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013).

    Article  CAS  Google Scholar 

  10. F. Aieta, M.A. Kats, P. Genevet, and F. Capasso: Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015).

    Article  CAS  Google Scholar 

  11. Y. Yang, W. Wang, P. Moitra, I.I. Kravchenko, D.P. Briggs, and J. Valentine: Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014).

    Article  CAS  Google Scholar 

  12. M. Decker, I. Staude, M. Falkner, J. Dominguez, D.N. Neshev, I. Brener, and Y.S. Kivshar: High efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

    Article  CAS  Google Scholar 

  13. D. Lin, P. Fan, E. Hasman, and M.I. Brongersma: Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014).

    Article  CAS  Google Scholar 

  14. Y. Yang, W. Wang, and P. Moitra: Dielectric meta-Reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett 14, 1394–1399 (2014).

    Article  CAS  Google Scholar 

  15. P. Moitra, B.A. Slovick, W. Li, I.I. Kravchencko, D.P. Briggs, S. Krishnamurthy, and J. Valentine: Large-scale all-dielectric Metamaterial perfect reflectors. ACS Photonics 2, 692–698 (2015).

    Article  CAS  Google Scholar 

  16. J. Li, C.M. Shah, W. Withayachumnan, B.S.Y. Ung, A. Mitchell, S. Sriram, and D. Abbott: Mechanically tunable terahertz metamaterials. Appl. Phys. Lett 102, 121101–121101–4 (2013).

    Article  Google Scholar 

  17. J.Y. Ou, E. Plum, L. Jiang, and N.I. Zheludev: Reconfigurable photonic metamaterials. Nano Lett. 11, 2142–2144 (2011).

    Article  CAS  Google Scholar 

  18. J.K. Yao, H.I. Huang, and J.Y. Ma: High refractive index TiO2 film deposited by electron beam evaporation. Surf. Eng. 25, 257–260 (2009).

    Article  CAS  Google Scholar 

  19. R.S. Sonawane, S.G. Hegdeand and M.K. Dongare: Preparation of titanium (IV) oxide thin film photocatalyst by sol-gel dip coating. Mater. Chem. Phys. 77, 744–750 (2003).

    Article  CAS  Google Scholar 

  20. P. Löbl, M. Huppertz, and D. Merge: Nucleation and growth in TiO2 films prepared by sputtering and evaporation[J]. Thin Solid Films 251, 72–79 (1994).

    Article  Google Scholar 

  21. Y. Suda, H. Kawasaki, and T. Ueda: Preparation of high quality nitrogen doped Ti02 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films 453, 162–166 (2004).

    Article  Google Scholar 

  22. K. Sarakinos, J. Alami, C. Klever, and M. Wuttig: Growth of TiOx films by high power pulsed magnetron sputtering from a compound TiOi a target. Rev. Adv. Mater. 15, 44–48 (2007).

    CAS  Google Scholar 

  23. H. Kotake, J. Jiaand, and S. Nakamura: Tailoring the crystal structure of TiO2 thin films from the anatase to rutile phase. J. Vac. Sci. Technol. A 33, 041505 (2015).

    Article  Google Scholar 

  24. A. Bendavid, P.J. Martin, and A. Jamting: Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition. Thin Solid Films 355, 6–11 (1999).

    Article  Google Scholar 

  25. S. Sun, N. Yi, W. Yao, Q. Song, and S. Xiao: Enhanced second-harmonic generation from nonlinear optical metamagnetics. Opt. Express 22, 26613–26620 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC under the grant numbers 11374078, Shenzhen peacock plan KQCX20130627094 615410, and Shenzhen Fundamental research plan under the grant numbers JCYJ20130329155148184, JCYJ20140417172 417110, and JCYJ20140417172417096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghai Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, N., Wang, K., Wei, H. et al. Fabricating high refractive index titanium dioxide film using electron beam evaporation for all-dielectric metasurfaces. MRS Communications 6, 77–83 (2016). https://doi.org/10.1557/mrc.2016.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.13

Navigation