Skip to main content
Log in

Thermal conductivity of synthetic boron-doped single-crystal HPHT diamond from 20 to 400 K

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Thermal conductivity of single-crystal boron-doped diamond (BDD) was studied in comparison with high-quality pure I la-type diamond in the temperature range from 20 to 400 K. Boron content in BDD was about 1019 cnr3 that is a typical value of p+ substrates used for power device applications. The thermal conductivity of BDD is about 10 times less than that of lla diamond near 100 K, but above room temperature the difference is <30%. The observed deviation mostly takes place due to acoustic phonon scattering on extended structural defects occurring in synthetic diamond at high boron content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Table I
Figure 7

Similar content being viewed by others

References

  1. R.S. Sussmann: CVD Diamond for Electronic Devices and Sensors (J. Wiley, Chichester, UK, 2009).

    Book  Google Scholar 

  2. N. Yang (ed.): Novel Aspects of Diamond (Springer International Publishing, Cham, 2015).

    Google Scholar 

  3. S.N. Polyakov, V.N. Denisov, N.V. Kuzmin, M.S. Kuznetsov, S. Y. Martyushov, S.A. Nosukhin, S.A. Terentiev, and V.D. Blank: Characterization of top-quality type IIa. synthetic diamonds for new X-ray optics. Diam. Relat. Mater. 20, 726–728 (2011).

    Article  CAS  Google Scholar 

  4. Y. Shvyd’ko, S. Stoupin, V. Blank, and S. Terentyev: Near-100% Bragg reflectivity of X-rays. Nat. Photonics 5, 539–542 (2011).

    Article  Google Scholar 

  5. V.S. Bormashov, S.G. Buga, V.D. Blank, M.S. Kuznetsov, S.A. Nosukhin, S.A. Terent’ev, and E.G. Pel’: Fast-response thermistors made of synthetic single-crystal diamonds. Instrum. Exp. Tech. 52, 738–742 (2009).

    Article  CAS  Google Scholar 

  6. V.D. Blank, V.S. Bormashov, S.A. Tarelkin, S.G. Buga, M.S. Kuznetsov, D. V. Teteruk, N.V. Kornilov, S.A. Terentiev, and A.P. Volkov: Power high-voltage and fast response Schottky barrier diamond diodes. Diam. Relat. Mater. 57, 32–36 (2015).

    Article  CAS  Google Scholar 

  7. S. Tarelkin, V. Bormashov, S. Buga, A. Volkov, D. Teteruk, N. Kornilov, M. Kuznetsov, S. Terentiev, A. Golovanov, and V. Blank: Power diamond vertical Schottky barrier diode with 10 A forward current. Phys. Status SolidiA 212, 2621 (2015).

    Article  CAS  Google Scholar 

  8. A. Eucken: The heat conductivity of certain crystals at low temperatures. Phys. Is. 12, 1005 (1911).

    Google Scholar 

  9. W.J. de Haas and T. Biermasz: The dependence on thickness of the thermal resistance of crystals at low temperatures. Physica 5, 619–624 (1938).

    Article  Google Scholar 

  10. R. Berman, F.E. Simon, and J.M. Ziman: The thermal conductivity of diamond at low temperatures. Proc. R. Soc. Math. Phys. Eng. Sci. 220, 171–183 (1953).

    CAS  Google Scholar 

  11. R. Berman, P.R.W. Hudson, and M. Martinez: Nitrogen in diamond: evidence from thermal conductivity. J. Phys. C Solid State Phys. 8, L430–L434 (1975).

    Article  CAS  Google Scholar 

  12. T.R. Anthony, W.F. Banholzer, J.F. Fleischer, L. Wei, P.K. Kuo, R. L. Thomas, and R.W. Pryor: Thermal diffusivity of isotopically enriched C 12 diamond. Phys. Rev.B 42, 1104–1111 (1990).

    Article  CAS  Google Scholar 

  13. J. Olson, R. Pohl, J. Vandersande, A. Zoltan, T. Anthony, and W. Banholzer: Thermal conductivity of diamond between 170 and 1200 K and the isotope effect. Phys. Rev. B 47, 14850–14856 (1993).

    Article  CAS  Google Scholar 

  14. D.G. Onn, A. Witek, Y.Z. Qiu, T.R. Anthony, and W.F. Banholzer: Some aspects of the thermal conductivity of isotopically enriched diamond single crystals. Phys. Rev. Lett. 68, 2806–2809 (1992).

    Article  CAS  Google Scholar 

  15. L. Wei, P. Kuo, R. Thomas, T. Anthony, and W. Banholzer: Thermal conductivity of isotopically modified single crystal diamond. Phys. Rev. Lett. 70, 3764–3767 (1993).

    Article  CAS  Google Scholar 

  16. V.S. Bormashov, S.A. Tarelkin, S.G. Buga, M.S. Kuznetsov, S.A. Terentiev, A.N. Semenov, and V.D. Blank: Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method. Diam. Relat. Mater. 35, 19–23 (2013).

    Article  CAS  Google Scholar 

  17. V.D. Blank, M.S. Kuznetsov, S.A. Nosukhin, S.A. Terentiev, and V. N. Denisov: The influence of crystallization temperature and boron concentration in growth environment on its distribution in growth sectors of type lIb diamond. Diam. Relat. Mater. 16, 800–804 (2007).

    Article  CAS  Google Scholar 

  18. J. Callaway: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959).

    Article  CAS  Google Scholar 

  19. C. Kittel: Introduction to Solid State Physics, 8th ed. (Wiley, Hoboken, NJ, 2005).

    Google Scholar 

  20. T.M. Tritt (ed.): Thermal Conductivity: Theory, Properties, and Applications (Kluwer Academic/Plenum Publishers, New York, 2004).

    Google Scholar 

Download references

Acknowledgments

Thermal conductivity measurements were carried out using the facility of the Shared-Use Equipment Center of the Technological Institute for Superhard and Novel Carbon Materials. The work at TISNCM was supported by the Ministry of Education and Science of the Russian Federation, scientific project no.14.580.21.0003 (RFMEFI58015X0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bormashov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prikhodko, D., Tarelkin, S., Bormashov, V. et al. Thermal conductivity of synthetic boron-doped single-crystal HPHT diamond from 20 to 400 K. MRS Communications 6, 71–76 (2016). https://doi.org/10.1557/mrc.2016.12

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.12

Navigation