Skip to main content
Log in

An integral equation based domain decomposition method for solving large-size substrate-supported aperiodic plasmonic array platforms

  • Plasmonics, Photonics, and Metamaterials Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We propose a surface integral equation simulation scheme which incorporates the integral equation fast Fourier transform accelerative algorithm and domain decomposition method. Such scheme provides efficient and accurate solutions for substrate-supported non-periodic plasmonic array platforms with large number of building blocks and complex element geometry. The effect of array defects can be systematically and successfully studied taking advantage of the considerable flexibility of the domain decomposition approach. The proposed model will be of great advantage for fast and accurate characterization of graded-pattern plasmonic materials and metasurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Table I
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. D.K. Gramotnev and S.I. Bozhevolnyi: Plasmonics beyond the diffraction limit. Nat Photonics 4, 83 (2010).

    Article  CAS  Google Scholar 

  2. G.A. Sotiriou: Biomedical applications of multifunctional plasmonic nano-particles. Wires Nanomed. Nanobiotechnol. 5, 19 (2013).

    Article  CAS  Google Scholar 

  3. P. Dong, Y. Lin, J. Deng, and J. Di: Ultrathin gold-shell coated silver nano-particles onto a glass platform for improvement of plasmonic sensors. ACS Appl. Mater. Interfaces 5, 2392 (2013).

    Article  CAS  Google Scholar 

  4. J. Cheng and H. Mosallaei: Optical metasurfaces for beam scanning in space. Opt. Lett. 39, 2719 (2014).

    Article  Google Scholar 

  5. K. Yee: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302 (1966).

    Article  Google Scholar 

  6. J.M. Jin: Finite Element Method in Electromagnetics (John Wiley & Sons, Hoboken, NJ, 2014).

    Google Scholar 

  7. R.F. Harrington and J.L. Harrington: Field Computation by Moment Methods (Oxford University Press, Oxford, 1996).

    Google Scholar 

  8. W.C. Chew, E. Michielssen, J.M. Song, and J.M. Jin: Fast and Efficient Algorithms in Computational Electromagnetics (Artech House, Inc., Norwood, MA, 2001).

    Google Scholar 

  9. O. Ergiil and L. Giirel: Efficient parallelization of the multilevel fast multi-pole algorithm for the solution of large-scale scattering problems. IEEE Trans. Antennas Propag. 56, 2335 (2008).

    Article  Google Scholar 

  10. S.M. Seo and J.F. Lee: A fast IE-FFT algorithm for solving PEC scattering problems. IEEE Trans. Magn. 41, 1476 (2005).

    Article  Google Scholar 

  11. S. Börm, L. Grasedyck, and W. Hackbusch: Introduction to hierarchical matrices with applications. Eng. Anal. Bound. Elem. 27, 405 (2003).

    Article  Google Scholar 

  12. Z. Peng, V. Rawat, and J.F. Lee: One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems. J. Comput. Phys. 229, 1181 (2010).

    Article  Google Scholar 

  13. X. Wang, Z. Peng, K.H. Lim, and J.F. Lee: Multisolver domain decomposition method for modeling EMC effects of multiple antennas on a large air platform. IEEE Trans. EMC 54, 375 (2012).

    Google Scholar 

  14. Z. Peng, X.C. Wang, and J.F. Lee: Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects. IEEE Trans. Antennas Propag. 59, 3328 (2011).

    Article  Google Scholar 

  15. M. Jiang, J. Hu, M. Tian, R. Zhao, X. Wei, and Z. Nie: Solving scattering by multilayer dielectric objects using JMCFIE-DDM-MLFMA. IEEE Antennas Wlrel. Propag. Lett. 13, 1132 (2014).

    Article  Google Scholar 

  16. M. Esquius-Morote, J.S. Gomez-Diaz, and J. Perruisseau-Carrier: Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. lEEETrans. Terahertz Sci. Technol. 4, 116 (2014).

    Article  Google Scholar 

  17. Y.C. Jun, E. Gonzales, J.L. Reno, E.A. Shaner, A. Gabbay, and I. Brener: Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Opt. Express 20, 1903 (2012).

    Article  CAS  Google Scholar 

  18. D. Ansari-Oghol-Beig and H. Mosalaei: Array IE-FFT solver for simulation of supercells and aperiodic penetrable metamaterials. J. Comput. Theor. Nanosci. 12, 3864 (2015).

    Article  CAS  Google Scholar 

  19. M.K. Li and W.C. Chew: Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme. IEEE Trans. Antennas Propag. 56, 2389 (2008).

    Article  Google Scholar 

  20. Northeastern University Research Computing, http://nuweb12.neu.edu/rc/?page_id=27.

  21. L.M. Carvalho, S. Gratton, R. Lago and X. Vasseur: A flexible generalized conjugate residual method with inner orthogonalization and deflated restarting. SIAMJ. Matrix Anal. Appl. 32, 1212 (2011).

    Article  Google Scholar 

  22. B.T. Diroll, T.R. Gordon, E.A. Gaulding, D.R. Klein, T. Paik, H.J. Yun, E.D. Goodwin, D. Damodhar, C.R. Kagan, and C.B. Murray: Synthesis of N-type plasmonic oxide nanocrystals and the optical and electrical characterization of their transparent conducting films. Chem. Mater. 26, 4579 (2014).

    Article  CAS  Google Scholar 

  23. T.R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R.T. Weber, P. Fornasiero, and C.B. Murray: Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 134, 6751 (2012).

    Article  CAS  Google Scholar 

  24. N.W. Ashcroft, N.D. Mermin, and S. Rodriguez: Solid state physics. Am. J. Phys. 46, 116 (1978).

    Article  Google Scholar 

  25. J.D. Caldwell, O.J. Glembock, Y. Francescato, N. Sharac, V. Giannini, F.J. Bezares, J.P. Long, J.C. Owrutsky, I. Vurgaftman, J.G. Tischler, V.D. Wheeler, N.D. Bassim, L.M. Shirey, R. Kasica, and S.A. Maier: Low-loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators. Nano Lett. 13, 3690 (2013).

    Article  CAS  Google Scholar 

  26. J. Cheng, W.L. Wang, H. Mosallaei, and E. Kaxiras: Surface plasmon engineering in graphenefunctionalized with organic molecules: a multiscale theoretical investigation. Nano Lett. 14, 50 (2013).

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported in part by DARPA award via Grant # N00014-14-1-0850 and in part by AFOSR award Grant # FA9550-14-1-0349. The authors would like to also acknowledge the help of Dr. Davood Ansari-Oghol-Beig and discussion with him during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mosallaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, S., Cheng, J. & Mosallaei, H. An integral equation based domain decomposition method for solving large-size substrate-supported aperiodic plasmonic array platforms. MRS Communications 6, 105–115 (2016). https://doi.org/10.1557/mrc.2016.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.11

Navigation