Skip to main content
Log in

Local-structure-affected behavior during self-driven grain boundary migration

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In nanocrystalline (nc) metals, it is still not clear how local grain boundary (GB) structures accommodate GB migration at atomic scales and what dominates the motion of atoms at the inherently unstable GB front. Here, we report the adjustment of the local GB structures at atomic scales during self-driven GB migration, simultaneously involving GB dissociation, partial dislocation emission from GB, and faceting/defaceting in the nc Cu. Furthermore, we reveal that the fundamental of GB migration ability is closely related to the local structure, i.e. the GB segment consisting of “hybrid” structural units and delocalized GB dislocations is relatively unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J. Schiotz and K.W. Jacobsen: A maximum in the strength of nanocrys-talline copper. Science 301, 1357 (2003).

    Article  CAS  Google Scholar 

  2. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee and H. Gleiter: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43 (2003).

    Article  Google Scholar 

  3. S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev and A.K. Mukherjee: Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 398, 684 (1999).

    Article  CAS  Google Scholar 

  4. X.M. Luo, X.F. Zhu and G.P. Zhang: Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat. Commun. 5, 3021 (2014).

    Article  Google Scholar 

  5. T.J. Rupert, D.S. Gianola, Y. Gan and K.J. Hemker: Experimental observations of stress-driven grain boundary migration. Science 326, 1686 (2009).

    Article  CAS  Google Scholar 

  6. Y.T. Zhu, X.Z. Liao and X.L. Wu: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).

    Article  CAS  Google Scholar 

  7. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton and P. Wang: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387 (2003).

    Article  CAS  Google Scholar 

  8. V. Yamakov, D. Wolf, S.R. Phillpot and H. Gleiter: Deformation twinning in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 50, 5005 (2002).

    Article  CAS  Google Scholar 

  9. X.L. Wu and E. Ma: Deformation twinning mechanisms in nanocrystalline Ni. Appl. Phys. Lett. 88, 061905 (2006).

    Article  Google Scholar 

  10. H. Van Swygenhoven, P. Derlet and A. Hasnaoui: Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B 66, 024101 (2002).

    Article  Google Scholar 

  11. P.M. Derlet, H. Van Swygenhoven and A. Hasnaoui: Atomistic simulation of dislocation emission in nanosized grain boundaries. Phil. Mag. 83, 3569 (2003).

    Article  CAS  Google Scholar 

  12. L.E. Murr: Strain-induced dislocation emission from grain boundaries in stainless steel. Mater. Sci. Eng. 51, 71 (1981).

    Article  CAS  Google Scholar 

  13. B.B. Straumal, S.A. Polyakov and E.J. Mittemeijer: Temperature influence on the faceting of Σ3 and Σ9 grain boundaries in Cu. Acta Mater. 54, 167 (2006).

    Article  CAS  Google Scholar 

  14. K.L. Merkle, L.J. Thompson and F. Phillipp: Collective effects in grain boundary migration. Phys. Rev. Lett. 88, 225501 (2002).

    Article  CAS  Google Scholar 

  15. K.L. Merkle and L.J. Thompson: Atomic-scale observation of grain boundary motion. Mater. Lett. 48, 188 (2001).

    Article  CAS  Google Scholar 

  16. K.L. Merkle, L.J. Thompson and F. Phillipp: In-situ HREM studies of grain boundary migration. Interface Sci. 12, 277 (2004).

    Article  CAS  Google Scholar 

  17. L. Liu, J. Wang, S. Gong and S. Mao: High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag. Phys. Rev. Lett. 106, 175504 (2011).

    Article  CAS  Google Scholar 

  18. G. Gottstein and L.S. Shvindlerman: Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed. (CRC Press, Boca Raton, 2010).

    Google Scholar 

  19. C.T. Koch. Determination of core structure periodicity and point defect density along dislocations. Ph.D. Dissertation, Arizona State University, Tempe, AZ, 2002.

    Google Scholar 

  20. D.G. Brandon: The structure of high-angle grain boundaries. Acta Metall. 14, 1479 (1966).

    Article  CAS  Google Scholar 

  21. D.L. Medlin, C.B. Carter, J.E. Angelo and M.J. Mills: Climb and glide of a/3 (111) dislocations in an aluminium Σ = 3 boundary. Phil. Mag. A 175, 733 (1997).

    Article  Google Scholar 

  22. K.L. Merkle and D. Wolf: Low-energy configurations of symmetric and asymmetric tilt grain boundaries. Phil. Mag. A 65, 513 (1992).

    Article  Google Scholar 

  23. J.D. Rittner and D.N. Seidman: (110) symmetric tilt grain-boundary structures in fee metals with low stacking-fault energies. Phys. Rev. B 54, 6999 (1996).

    Article  CAS  Google Scholar 

  24. M.A. Tschopp, G.J. Tucker and D.L. McDowell: Structure and free volume of (110) symmetric tilt grain boundaries with the E structural unit. Acta Mater. 55, 3959 (2007).

    Article  CAS  Google Scholar 

  25. Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev and T.G. Langdon: An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J. Mater. Res. 11, 1880 (1996).

    Article  CAS  Google Scholar 

  26. F. Mompiou, M. Legros, T. Radetic, U. Dahmen, D.S. Gianola and K.J. Hemker: In situ TEM observation of grain annihilation in tricrystalline aluminum films. Acta Mater. 60, 2209 (2012).

    Article  CAS  Google Scholar 

  27. R.F. Egerton, P. Li and M. Malac: Radiation damage in the TEM and SEM. Micron 35, 399 (2004).

    Article  CAS  Google Scholar 

  28. A.V. Krasheninnikov and F. Banhart: Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 6, 723 (2007).

    Article  CAS  Google Scholar 

  29. H. Gleiter: The structure and properties of high-angle grain boundaries in metals. Phys. Status Solidi b 45, 9 (1971).

    Article  CAS  Google Scholar 

  30. A.P. Sutton and V. Vitek: On the structure of tilt boundary boundaries in cubic metals I. symmetrical tilt boundaries. Phil. Trans. R. Soc. A 309, 1 (1983).

    CAS  Google Scholar 

  31. H. Zhang and D.J. Srolovitz: Simulation and analysis of the migration mechanism of Z5 tilt grain boundaries in an fee metal. Acta Mater. 54, 623 (2006).

    Article  CAS  Google Scholar 

  32. M.Y. Gutkin, L.A. Ovid’ko and N.V. Skiba: Emission of partial dislocations from triple junctions of grain boundaries in nanocrystalline materials. J. Phys. D., Appl. Phys. 38, 3921 (2005).

    Article  CAS  Google Scholar 

  33. H. Van Swygenhoven and P. Derlet: Grain-boundary sliding in nanocrystalline fee metals. Phys. Rev. B 64, 224105 (2001).

    Article  Google Scholar 

  34. D.E. Spearot, K.I. Jacob and D.L. McDowell: Dislocation nucleation from bicrystal interfaces with dissociated structure. Int. J. Plasticity 23, 143 (2007).

    Article  CAS  Google Scholar 

  35. P.M. Derlet, A. Hasnaoui and H. Van Swygenhoven: Atomistic simulations as guidance to experiments. Scr. Mater. 49, 629 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC, grant numbers 51371047 and 51571199), the External Cooperation Program of the Chinese Academy of Sciences (grant no. GJHZ1401), and partially supported by the NSFC (grant No. 51371180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X.M., Zhang, B., Zhu, X.F. et al. Local-structure-affected behavior during self-driven grain boundary migration. MRS Communications 6, 85–91 (2016). https://doi.org/10.1557/mrc.2016.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.10

Navigation