Skip to main content
Log in

Composing molecular music with carbon

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

What musical notes can a molecule play? Carbyne is a chain of atoms that vibrates similar to an elastic string. Like the tuning of a guitar string, this vibration can be predicted based on length and tension. Using atomistic simulation, we determine the vibrational response of carbyne. We further produce audible notes, enabling specific musical composition with prescribed molecular conditions (pre-strain and length) and combine single chains into multi-chain systems to form molecular chords. Since the tension of a molecular chain is relatively low (<nN), such “strings” can potentially be developed for signaling and detection with high resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table I
Figure 3

Similar content being viewed by others

References

  1. E.B. Wilson, P.C. Cross, J.C. Decius: Molecular vibrations: The theory of Infrared and Raman Vibrational Spectra. (Dover Publications, 1994).

    Google Scholar 

  2. H.N. Chapman, P. Fromme, A. Barty, T.A. White, R.A. Kirian, A. Aquila, M.S. Hunter, J. Schulz, D.P. DePonte, U. Weierstall, R.B. Doak, F.R.N.C. Maia, A.V. Martin, I. Schlichting, L. Lomb, N. Coppola, R.L. Shoeman, S.W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M.N. Liang, M. Barthelmess, C. Caleman, S. Boutet, M.J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Homke, C. Reich, D. Pietschner, L. Struder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K.U. Kuhnel, M. Messerschmidt, J.D. Bozek, S.P. Hau-Riege, M. Frank, C.Y. Hampton, R.G. Sierra, D. Starodub, G.J. Williams, J. Hajdu, N. Timneanu, M.M. Seibert, J. Andreasson, A. Rocker, O. Jonsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C.D. Schroter, F. Krasniqi, M. Bott, K.E. Schmidt, X.Y. Wang, I. Grotjohann, J.M. Holton, T.R.M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, and J.C.H. Spence: Femtosecond X-ray protein nanocrystallography. Nature 470, 73 (2011).

    Article  CAS  Google Scholar 

  3. C. Debus and P.H. Bolivar: Frequency selective surfaces for high sensitivity terahertz sensing. Appl. Phys. Lett. 91, 184102 (2007).

    Article  Google Scholar 

  4. T.W. Crowe, T. Globus, D.L. Woolard, and J.L. Hesler: Terahertz sources and detectors and their application to biological sensing. Philos. Trans. R. Soc. A 362, 365 (2004).

    Article  CAS  Google Scholar 

  5. M. Tonouchi: Cutting-edge terahertz technology. Nat. Photonics 1, 97 (2007).

    Article  CAS  Google Scholar 

  6. B. Ferguson and X.C. Zhang: Materials for terahertz science and technology. Nat. Mater. 1, 26 (2002).

    Article  CAS  Google Scholar 

  7. N. Chartuprayoon, M. Zhang, W. Bosze, Y.-H. Choa, and N.V. Myung: One-dimensional nanostructures based bio-detection. Biosens. Bioelectron. 63, 432 (2015).

    Article  CAS  Google Scholar 

  8. K. Chenoweth, A.C.T. van Duin, and W.A. Goddard: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112, 1040 (2008).

    Article  CAS  Google Scholar 

  9. M. Liu, V.I. Artyukhov, H. Lee, F. Xu, and B.I. Yakobson: Carbyne from first principles: chain of C atoms, a nanorod or a nanorope. ACS Nano 7, 10075 (2013).

    Article  CAS  Google Scholar 

  10. A.K. Nair, S.W. Cranford, and M.J. Buehler: The minimal nanowire: mechanical properties of carbyne. Epl-Europhys. Lett. 95, 16002 (2011).

    Article  Google Scholar 

  11. A.J. Kocsis, N.A.R. Yedama, and S.W. Cranford: Confinement and controlling the effective compressive stiffness of carbyne. Nanotechnology 25, 335709 (2014).

    Article  Google Scholar 

  12. R.O. Jones and G. Seifert: Structure and bonding in carbon clusters C14 to C24: chains, rings, bowls, plates, and cages. Phys. Rev. Lett. 79, 443 (1997).

    Article  CAS  Google Scholar 

  13. W.A. Chalifoux and R.R. Tykwinski: Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat. Chem. 2, 967 (2010).

    Article  CAS  Google Scholar 

  14. C.H. Jin, H.P. Lan, L.M. Peng, K. Suenaga, and S. Iijima: Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 102, 205501 (2009).

    Article  Google Scholar 

  15. A. Chuvilin, J.C. Meyer, G. Algara-Siller, and U. Kaiser: From graphene constrictions to single carbon chains. New J. Phys. 11, 083019 (2009).

    Article  Google Scholar 

  16. D.R. Grimes: String theory—the physics of string-bending and other electric guitar techniques. PLoS ONE 9, e102088 (2014).

    Article  Google Scholar 

  17. A. Klapuri and M. Davy: Signal Processing Methods for Music Transcription (Springer, New York, 2006).

    Book  Google Scholar 

  18. X. He, N. Fujimura, J.M. Lloyd, K.J. Erickson, A.A. Talin, Q. Zhang, W. Gao, Q. Jiang, Y. Kawano, R.H. Hauge, F. Léonard, and J. Kono: Carbon nanotube terahertz detector. Nano Lett. 14, 3953 (2014).

    Article  CAS  Google Scholar 

  19. R. Chowdhury, S. Adhikari, and J. Mitchell: Vibrating carbon nanotube based bio-sensors. Physica E 42, 104 (2009).

    Article  CAS  Google Scholar 

  20. S.W. Cranford, M.J. Buehler and SpringerLink (Online service): Biomateriomics, in R. Hull, C. Jagadish, R.M. Osgood, J. Parisi, Z. Wang, Springer Series in Materials Science (Springer, Netherlands: Imprint: Springer, Dordrecht, 2012), p. xvi.

    Google Scholar 

  21. S.W. Cranford: Thermal stability of idealized folded carbyne loops. Nanoscale Res. Lett. 8, 490 (2013).

    Article  Google Scholar 

  22. W. Humphrey, A. Dalke, and K. Schulten: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.J.K. and S.W.C. acknowledge generous support from NEU’s CEE Department. S.W.C. also wishes to thank James Hurley and Mark Belbin for fruitful musical discussion. The calculations and the analysis were carried out using a parallel LINUX cluster at NEU’s Laboratory for Nanotechnology In Civil Engineering (NICE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven W. Cranford.

Electronic supplementary material

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocsis, A.J., Cranford, S.W. Composing molecular music with carbon. MRS Communications 5, 57–62 (2015). https://doi.org/10.1557/mrc.2015.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.9

Navigation