Skip to main content
Log in

Optoplasmonic networks with morphology-dependent near- and far-field responses

  • Plasmonics, Photonics, and Metamaterials Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Optoplasmonic networks consisting of dielectric microsphere resonators and plasmonic nanoantennas in a morphologically well-defined on-chip platform support unique electromagnetic signatures that are hybrids of photonic whispering gallery modes and localized surface plasmon resonances. Here we explore the dependence of their near- and far-field responses on the key structural parameters, including the size of the gold nanoparticles forming the plasmonic elements, the separation between the microspheres, and the geometry of the chain. The high degree of structural flexibility, which is experimentally accessible through template guided self-assembly approaches, makes these optoplasmonic structures a unique electromagnetic material for tuning spectral shapes and intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Y. Hong, W. Ann, S.V. Boriskina, X. Zhao, and B.M. Reinhard: Directed assembly of optoplasmonic hybrid materials with tunable photonic-plasmonic properties. J. Phys. Chem. Lett. 6, 2056 (2015).

    Article  CAS  Google Scholar 

  2. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson: Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. Nano Lett. 10, 891 (2010).

    Article  CAS  Google Scholar 

  3. T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci: Plasmonic-photonic crystal coupled nanolaser. Nanotechnology 25, 315201 (2014).

    Article  Google Scholar 

  4. M. Chamanzarand A. Adibi: Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators. Opt. Express 19, 22292 (2011).

    Article  Google Scholar 

  5. W. Ahn, S.V. Boriskina, Y. Hong, and B.M. Reinhard: Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules. ACS Nano 6, 951 (2012).

    Article  CAS  Google Scholar 

  6. W. Ahn, Y. Hong, S.V. Boriskina, and B.M. Reinhard: Demonstration of efficient on-chip photon transfer in self-assembled optoplasmonic networks. ACS Nano 7, 4470 (2013).

    Article  CAS  Google Scholar 

  7. S.V. Boriskina and B.M. Reinhard: Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits. Proc. Natl. Acad. Sci. USA 108, 3147 (2011).

    Article  CAS  Google Scholar 

  8. S.V. Boriskina and B.M. Reinhard: Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates. Opt. Express 19, 22305 (2011).

    Article  Google Scholar 

  9. W. Ahn, X. Zhao, Y. Hong, and B.M. Reinhard: Low-power light guiding and localization in optoplasmonic chains obtained by directed self-assembly. Under Review (2015).

    Google Scholar 

  10. A. Haddadpour and Y. Yi: Metallic nanoparticle on micro ring resonator for bio optical detection and sensing. Biomed. Opt. Express 1, 378 (2010).

    Article  CAS  Google Scholar 

  11. Y.-F. Xiao, Y.-C. Liu, B.-B. Li, Y.-L. Chen, Y. Li, and Q. Gong: Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator. Phys. Rev. A 85, 031805 (2012).

    Article  Google Scholar 

  12. Q. Lu, D. Chen, G. Wu, B. Peng, and J. Xu: A hybrid plasmonic microresonator with high quality factor and small mode volume. J. Opt. 14, 125503 (2012).

    Article  Google Scholar 

  13. S. Arnold, V.R. Dantham, C. Barbre, B.A. Garetz, and X. Fan: Periodic plasmonic enhancing epitopes on a whispering gallery mode biosensor. Opt. Express 20, 26147 (2012).

    Article  CAS  Google Scholar 

  14. I.M. White, H. Oveys, and X. Fan: Increasing the enhancement of SERS with dielectric microsphere resonators. Spectroscopy 21, 36 (2006).

    CAS  Google Scholar 

  15. S. Shopova, R. Rajmangal, S. Holler, and S. Arnold: Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl. Phys. Lett. 98, 243104 (2011).

    Article  Google Scholar 

  16. M.A. Santiago-Cordoba, S.V. Boriskina, F. Vollmer, and M.C. Demirei: Nanoparticle-based protein detection by optical shift of a resonant micro-cavity. Appl. Phys. Lett. 99, 073701 (2011).

    Article  Google Scholar 

  17. C. Shi, H.S. Choi, and A.M. Armani: Optical microcavities with a thiol-functionalized gold nanoparticle polymer thin film coating. Appl. Phys. Lett. 100, 013305 (2012).

    Article  Google Scholar 

  18. V.N. Astratov: Fundamentals and applications of microsphere resonator circuits. In Photonic Microresonator Research and Applications, editor-in-chief W.T. Rhodes (Springer, Atlanta, GA, 2010), pp. 423–457.

    Chapter  Google Scholar 

  19. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, and C.T. Chong: The Fano resonance in plasmonic nanostruc-tures and metamaterials. Nat. Mater. 9, 707 (2010).

    Article  Google Scholar 

  20. J.A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N.J. Halas, V.N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso: Self-assembled plasmonic nanoparticle clusters. Science 328, 1135 (2010).

    Article  CAS  Google Scholar 

  21. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A.P. Alivisatos, and N. Liu: Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721 (2010).

    Article  CAS  Google Scholar 

  22. J.B. Lassiter, H. Sobhani, J.A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N.J. Halas: Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett. 10, 3184 (2010).

    Article  CAS  Google Scholar 

  23. B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O.J.F. Martin: Plasmonic radiance: probing structure at the Angstrom scale with visible light. Nano Lett. 13, 497 (2013).

    Article  CAS  Google Scholar 

  24. T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa: Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres. Adv. Mater. 22, 3022 (2010).

    Article  CAS  Google Scholar 

  25. A.M. Kapitonov and V.N. Astratov: Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities. Opt. Lett. 32, 409 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DOE DE-SC0010679.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn M. Reinhard.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, W., Zhao, X., Hong, Y. et al. Optoplasmonic networks with morphology-dependent near- and far-field responses. MRS Communications 5, 579–586 (2015). https://doi.org/10.1557/mrc.2015.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.78

Navigation