Skip to main content

Advertisement

Log in

Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Beyond the traditional phase conversion or biphase mixing hybrid, we developed the dilute magnesium-doped wollastonite inks and three-dimensional (3D) printing approaches to fabricate the ultrahigh strength bioceramic porous scaffolds. The mechanical strength (>120 MPa) of the porous bioceramics was an order of magnitude higher than the pure wollastonite and other stoichiometric Ca-Mg silicate porous bioceramics. This abnormal but expected improvement in strength in bioceramic scaffolds is equivalent or even superior to the mechanical requirement in load-bearing bone defects. The breakthrough is totally unexpected, and it quickly opens the door for the 3D printing bioceramics manufacture and large-area segmental bone defect repair applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. 1. S.J. Hollister: Porous scaffold design fortissue engineering. Nat. Mater. 4, 518–524 (2005).

    Article  CAS  Google Scholar 

  2. J. Henkel, M.A. Woodruff, D.R. Epari, R. Steck, V. Glatt, I.C. Dickinson, P. F.M. Choong, M.A. Schuetz, and D.W. Hutmacher: Bone regeneration based on tissue engineering conceptions—A 21st century perspective. Bone Res. 3, 216–248 (2013).

    Article  Google Scholar 

  3. V. Karageorgiou and D. Kaplan: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005).

    Article  CAS  Google Scholar 

  4. P. Kasten, I. Beyen, P. Niemeyer, R. Luginbühl, M. Bonner, and W. Richter: Porosity and pore size of /Mricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater. 4, 1904–1915 (2008).

    Article  CAS  Google Scholar 

  5. A.C. Jone, C.H. Arns, D.W. Hutmacher, B.K. Milthorpe, A.P. Sheppard, and M.A. Knackstedt: The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials 30, 1440–1451 (2009).

    Article  Google Scholar 

  6. A. Hoppe, N.S. Guldal, and A.R. Boccaccini: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2013).

    Article  Google Scholar 

  7. P. Weiss, P. Layrolle, L.P. Clergeau, B. Enckel, P. Pilet, Y. Amouriq, G. Daculsi, and B. Giumelli: The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials 28, 3295–3305 (2007).

    Article  CAS  Google Scholar 

  8. M. Marcacci, E. Kon, V. Moukhachev, A. Lavroukov, S. Kutepov, R. Quarto, M. Mastrogiacomo, and R. Cancedda: Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 13, 947–955 (2007).

    Article  CAS  Google Scholar 

  9. C. Wu and J. Chan: A review of bioactive silicate ceramics. Biomed. Mater. 8, 032001 (2013).

    Article  Google Scholar 

  10. S. Xu, K. Lin, Z. Wang, J. Chang, L. Wang, J. Lu, and C. Ning: Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials 29, 2588–2596 (2008).

    Article  CAS  Google Scholar 

  11. M. Diba, O.M. Goudouri, F. Tapia, and A.R. Boccaccini: Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications. Curr Opin. Solid State Mater. Sci. 18, 147–167 (2014).

    Article  CAS  Google Scholar 

  12. M. Diba, F. Tapia, and A.R. Boccaccin: Magnesium-containing bioactive glasses for biomedical applications. Int. J. Appl. Glass Sci. 3, 221–253 (2012).

    Article  CAS  Google Scholar 

  13. M. Descamps, T. Duhoo, F. Monchau, J. Lu, P. Hardouin, J.C. Hornez, and A. Leriche: Manufacture of macroporous p-tricalcium phosphate bioceramics. J. Eur. Ceram. Soc. 28, 149–157 (2008).

    Article  CAS  Google Scholar 

  14. S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia: Freezing as a path to build complex composites. Science 311, 516–518 (2006).

    Article  Google Scholar 

  15. Q. Fu, E. Saiz, and A.P. Tomsia: Bioinspired strong and highly porous glass scaffolds. Adv. Fund. Mater. 21, 1058–1063 (2011).

    Article  CAS  Google Scholar 

  16. S. Deville, E. Saiz, and A.P. Tomsia: Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27, 5480–5489 (2006).

    Article  CAS  Google Scholar 

  17. A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, and R. Muller: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 7, 907–920 (2011).

    Article  CAS  Google Scholar 

  18. C. Bergmann, M. Lindner, W. Zhang, K. Koczur, A. Kirsten, R. Telle, and H. Fischer: 3D Printing of bone substitute implants using calcium phosphate and bioactive glasses. J. Eur. Ceram. Soc. 30, 2563–2567 (2010).

    Article  CAS  Google Scholar 

  19. A. Winkel, R. Meszaros, S. Reinsch, R. Müller, N. Travitzky, T. Fey, P. Greil, and L. Wondracze: Sintering of 3D-printed glass/HAp composites. J. Am. Ceram. Soc. 95, 3387–3393 (2012).

    Article  CAS  Google Scholar 

  20. Q. Fu, E. Saiz, M.N. Rahaman,and A.P. Tomsia: Toward strong and tough glass and ceramic scaffolds. Adv. Funct Mater. 23, 5461–5476 (2013).

    Article  CAS  Google Scholar 

  21. I.W. Chen and X.H. Wan: Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 40, 168–71 (2000).

    Article  Google Scholar 

  22. C.J. Shuai, D. Gao, P. Feng, and S.P. Peng: Graphene-reinforced mechanical properties of calcium silicate scaffolds by laser sintering. RSC Adv 4, 12782–12788 (2014).

    Article  CAS  Google Scholar 

  23. C. Wu, W. Fan, Y. Zhou, Y. Luo, M. Gelinsky, J. Chang, and Y. Xiao: 3D-printing of highly uniform CaSi03 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. J. Mater. Chem. 22, 12288–12295 (2012).

    Article  CAS  Google Scholar 

  24. H.S. Ryu, J.K. Lee, H. Kim, K.S. Hong, D.J. Kim, J.H. Lee, D.H. Lee, B.S. Chang, C.K. Lee, and S.S. Chung: Novel bioactive and degradable glass ceramics with high mechanical strength in the Ca0-Si02-B203 system. J. Biomed. Mater. Res. 68A, 79–89 (2004).

    Article  CAS  Google Scholar 

  25. C. Wu, J. Chang, W. Zhai, S. Ni, and J. Wang: Porous akermanite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J. Biomed. Mater. Res. B: Appl. Biomater. 78B, 47–55 (2006).

    Article  CAS  Google Scholar 

  26. C. Wu, Y. Ramaswamy, and H. Zreiqat: Porous diopside (CaMgSi206) scaffold: a promising bioactive material for bone tissue engineering. Acta Biomater. 6, 2237–2245 (2010).

    Article  CAS  Google Scholar 

  27. C. Wu, J. Chang, W. Zhai, and S. Ni: A novel bioactive porous bredigite (Ca7MgSi4016) scaffold with biomimetic apatite layer for bone tissue engineering. J. Mater. Sct Mater. Med. 18, 857–864 (2007).

    Article  CAS  Google Scholar 

  28. C. Chen, P. Watkins-Curry, M. Smoak, K. Hogan, S. Deese, G.T. McCandless, J.Y. Chan, and D.J. Hayes: Targeting calcium magnesium silicates for polycaprolactone/ceramic composite scaffolds. ACS Biomater. Sci. Eng. 1, 94–102 (2015).

    Article  CAS  Google Scholar 

  29. K. Xie, L. Zhang, X. Yang, G. Yang, X. Wang, L. Zhang, S. Xu, H. Shao, Y. He, J. Fu, and Z. Gou: Preparation and characterization of low-temperature sintered 45S5 bioactive glass-ceramics analogues. Biomed. Glass 1, 81–93 (2015).

    Google Scholar 

  30. H. Shao, X. Yang, Y. He, J. Fu, L. Liu, L. Zhang, G. Yang, C. Gao, and Z. Gou: 3D printed bioactive glass-reinforced bioceramic scaffolds: sintering, microstructure and mechanical behavior. Biofabrication 7, 035010 (2015).

    Article  Google Scholar 

  31. E. Champio: Sintering of calcium phosphate bioceramics. Acta Biomater. 9, 5855–5875 (2013).

    Article  Google Scholar 

  32. L.H. Long, L.D. Chen, S.Q. Bai, J. Chang, and K.L. Lin: Preparation of dense-CaSi03 ceramic with high mechanical strength and HAp formation ability in simulated body fluid. J. Eur. Ceram. Soc. 26, 1701–1706 (2006).

    Article  CAS  Google Scholar 

  33. A. Nadernezhad, F. Moztarzadeh, M. Hafezi, and H. Barzegar-Bafrooei: Two step sintering of a novel calcium magnesium silicate bioceramic: sintering parameters and mechanical characterization. J. Eur. Ceram. Soc. 34, 4001–4009 (2014).

    Article  CAS  Google Scholar 

  34. T.A. Land, T.L. Martin, S. Potapenko, G.T. Palmore, and J.J. De Yoreo: Recovery of surfaces from impurity poisoning during crystal growth. Nature 399, 442–445 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (grant no. LZ14E020001), the National Natural Science Foundation of China (grant numbers 81271956 and 51221004), Science and Technology Department of Zhejiang Province Foundation (grant numbers 2015C33119 and 2014C33202), and the National “Twelfth Five-Year” Plan for Science & Technology Support of China (grant no. 2012BAI08B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongru Gou.

Additional information

These authors are co-first authors.

Supplementary Material

Supplementary Material

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.74

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Shao, H., He, D. et al. Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds. MRS Communications 5, 631–639 (2015). https://doi.org/10.1557/mrc.2015.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.74

Navigation