Skip to main content
Log in

Optical properties of high-quality nanohole arrays in gold made using soft-nanoimprint lithography

  • Plasmonics, Photonics, and Metamaterials Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We present a novel soft-nanoimprint procedure to fabricate high-quality sub-wavelength hole arrays in optically thick films of gold on glass substrates. We fabricate 0.5 × 0.5 mm2 structures composed of a square array of 180 nm-diameter holes with a 780 nm pitch. Optical angular transmission measurements on the arrays show clear extraordinary transmission peaks corresponding to the dispersion of surface plasmon polaritons propagating on either side of the metal film. The transmission features can be strongly controlled by engineering the dielectric environment around the holes. As the nanoimprint procedure enables fabrication of nanoscale patterns over wafer-scale areas at low cost, these imprinted metal nanoparticle arrays can find applications in, e.g., optical components, photovoltaics, integrated optics, and microfluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667 (1998).

    Article  CAS  Google Scholar 

  2. H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, and H.J. Lezec: Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 58, 6779 (1998).

    Article  CAS  Google Scholar 

  3. C. Genet and T.W. Ebbesen: Light in tiny holes. Nature 455, 39 (2007).

    Article  Google Scholar 

  4. L. Martin-Moreno, F.J. Garcfa-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, and T.W. Ebbesen: Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114 (2001).

    Article  CAS  Google Scholar 

  5. J.L. Skinner, A.A. Talin, and D.A. Horsley: A MEMS light modulator based on diffractive nanohole gratings. Opt. Express, 16, 3701 (2008).

    Article  CAS  Google Scholar 

  6. J.M. McMahon, J. Henzie, T.W. Odom, G.C. Schatz, and S.K. Gray: Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons Opt. Express 15, 18119 (2007).

    Article  Google Scholar 

  7. H.A. Atwater and A. Polman: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 21 (2010).

    Article  Google Scholar 

  8. V.E. Ferry, M.A. Verschuuren, H.B.T. Li, E. Verhagen, R.J. Walters, R. E.I. Schropp, H.A. Atwater, and A. Polman: Light trapping in ultrathin plas-monic solar cells. Opt. Express 18, A237 (2010).

    Article  CAS  Google Scholar 

  9. B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, G.M. Whitesides: New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171 (2005).

    Article  CAS  Google Scholar 

  10. A. Boltasseva: Plasmonic components fabrication via nanoimprint. J. Opt. A: Pure Appl. Opt. 11, 114001 (2009).

    Article  Google Scholar 

  11. E.-S. Kwak, J. Henzie, S.-H. Chang, S.K. Gray, G.C. Schatz, and T.W. Odom: Surface plasmon standing waves in large-area subwavelength hole arrays. Nano Lett. 5, 1963 (2005).

    Article  CAS  Google Scholar 

  12. V. Malyarchuk, F. Hua, N.H. Mack, V.T. Velasquez, J.O. White, R.G. Nuzzo, and J.A. Rogers: High performance plasmonic crystal sensor formed by soft nanoimprint lithography. Opt. Express, 2, 5669 (2005).

    Article  Google Scholar 

  13. J. Henzie, M.H. Lee, and T.W. Odom: Multiscale patterning of plasmonic metamaterials. Nat. Nanotechnol. 2, 549 (2007).

    Article  CAS  Google Scholar 

  14. T.T. Truong, J. Maria, J. Yao, M.E. Stewart, T.-W. Lee, S.K. Gray, R.G. Nuzzo, and J.A. Rogers: Nanopost plasmonic crystals. Nanotechnology 20, 434011 (2009).

    Article  CAS  Google Scholar 

  15. J. Chena, J. Shia, D. Decaninia, E. Cambrila, Y. Chenc, and A.-M. Haghiri-Gosneta: Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography. Microelectr. Eng. 86, 632 (2009).

    Article  Google Scholar 

  16. S.H. Lee, K.C. Bantz, N.C. Lindquist, S.-H. Oh, and C.L. Haynes: Self-assembled plasmonic nanohole arrays. Langmuir 25, 13685 (2009).

    Article  CAS  Google Scholar 

  17. J. Yao, A.-P. Le, S.K. Gray, J.S. Moore, J.A. Rogers, and R.G. Nuzzo: Functional nanostructured plasmonic materials. Adv. Mater. 22, 1102 (2010).

    Article  CAS  Google Scholar 

  18. T.W. Odom, J.C. Love, D.B. Wolfe, K.E. Paul, and G.M. Whitesides: Functional nanostructured plasmonic materials. Langmuir 18, 5314 (2002).

    Article  CAS  Google Scholar 

  19. M. Verschuuren, and H. van Sprang: 3D Photonic structures by sol-gel imprint lithography. Materials Research Society Symp. Spring Meeting Proc. 1002, N03 (2007).

    Google Scholar 

  20. M.A. Verschuuren, M. Megens, and A. Polman: unpublished

  21. G.-Y. Jung, Z. Li, W. Wu, Y. Chen, D.L. Olynick, S.-Y. Wang, W.M. Tong, and R.S. Williams: Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir, 21, 1158 (2005).

    Article  CAS  Google Scholar 

  22. H. Schmid, and B. Michel: Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules, 33, 3042 (2000).

    Article  CAS  Google Scholar 

  23. T.W. Odom, J.C. Love, K.E. Paul, D.B. Wolfe, and G.M. Whitesides: Improved pattern transfer in soft lithography using composite stamps. Langmuir, 18, 5314 (2002).

    Article  CAS  Google Scholar 

  24. D. Burdinski, and M.H. Blees: Thiosulfate- and thiosulfonate-based etch-ants for the patterning of gold using microcontact printing. Chem. Mater. 19, 3933 (2007).

    Article  CAS  Google Scholar 

  25. M.J.A. de Dood, E.F.C. Driessen, D. Stolwijk, and M.P. van Exter: Observation of coupling between surface plasmons in index-matched hole arrays. Phys. Rev. B, 77, 115437 (2008).

    Article  Google Scholar 

  26. K.L. van der Molen, K.J. Klein Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, and L. Kuipers: Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory. Phys. Rev. B 72, 045421 (2005).

    Article  Google Scholar 

  27. D. Stolwijk, E.F.C. Driessen, M.A. Verschuuren, G.W.’t Hooft, M.P. van Exter, and M.J.A. de Dood: Enhanced coupling of plasmons in hole arrays with periodic dielectric antennas. Opt. Lett. 33, 363 (2008).

    Article  CAS  Google Scholar 

  28. M.J.A. de Dood, E.F.C. Driessen, D. Stolwijk, M.P. van Exter, M.A. Verschuuren, and G.W.’t Hooft: Solid-state index matching of surface plasmons. Proc. SPIE 6987, 6987113 (2008).

    Google Scholar 

  29. K.J. Klein Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, and L. Kuipers: Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys. Rev. Lett. 92, 183901 (2004).

    Article  Google Scholar 

  30. E.J.A. Kroekenstoel, E. Verhagen, R.J. Walters, L. Kuipers, and A. Polman: Enhanced spontaneous emission rate in annular plasmonic nanocavities. Appl. Phys. Lett. 95, 263106 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ewold Verhagen for useful discussions and insights. The AMOLF part of this work is part of the research program of FOM which is financially supported by NWO. It is also supported by the European Research Counsel and by NANONED, a nanotechnology program of the Dutch Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Polman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verschuuren, M.A., de Dood, M.J.A., Stolwijk, D. et al. Optical properties of high-quality nanohole arrays in gold made using soft-nanoimprint lithography. MRS Communications 5, 547–553 (2015). https://doi.org/10.1557/mrc.2015.70

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.70

Navigation