Skip to main content
Log in

Mechanical properties of APbX3 (A = Cs or CH3NH3; X= I or Br) perovskite single crystals

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The remarkable optoelectronic and especially photovoltaic performance of hybrid organic-inorganic perovskite (HOIP) materials drives efforts to connect materials properties to this performance. From nano-indentation experiments on solution-grown single crystals we obtain elastic modulus and nano-hardness values of APbX3 (A = Cs, CH3NH3; X = I, Br). The Young’s moduli are ≈14, 19.5, and 16 GPa, for CH3NH3Pbl3, CH3NH3PbBr3, and CsPbBr3, respectively, lending credence to theoretically calculated values. We discuss the possible relevance of our results to suggested “self-healing”, ion diffusion, and ease of manufacturing. Using our results, together with literature data on elastic moduli, we classified HOIPs amongst the relevant material groups, based on their elastomechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table I
Table II
Figure 3

Similar content being viewed by others

References

  1. M. Kulbak, D. Cahen, and G. Hodes: How important is the organic part of lead halide perovskite photovoltaic cells? efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 2452–2456 (2015).

    CAS  Google Scholar 

  2. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop: Solar cell efficiency tables (version 44). Prog. Photovolt. Res. Appl. 22, 701–710 (2014).

    Google Scholar 

  3. W.-J. Yin, T. Shi, and Y. Yan: Unusual defect physics in CH3NH3Pbl3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Google Scholar 

  4. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, and O.M. Bakr: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    CAS  Google Scholar 

  5. W. Tress, N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, and M. Gratzel: Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3Pbl3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015).

    CAS  Google Scholar 

  6. T.-Y. Yang, G. Gregori, N. Pellet, M. Gratzel, and J. Maier: The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. 127, 8016–8021 (2015).

    Google Scholar 

  7. C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O’Regan, A. Walsh, and M. S. Islam: Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. B, (2015).

  8. Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, and J. Huang: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

    CAS  Google Scholar 

  9. 9. J. Beilsten-Edmands, G.E. Eperon, R.D. Johnson, H.J. Snaith, and P. G. Radaelli: Non-ferroelectric nature of the conductance hysteresis in CH3NH3Pbl3 perovskite-based photovoltaic devices. Appl. Phys. Lett. 106, 173502 (2015).

    Google Scholar 

  10. Y. Kawamura, H. Mashiyama, and K. Hasebe: Structural study on cubic-tetragonal transition of CH3NH3Pbl3. J. Phys. Soc. Jpn. 71, 1694–1697 (2002).

    CAS  Google Scholar 

  11. H. Mashiyama, Y. Kawamura, E. Magome.and Y. Kubota: Displacive character of the cubic-tetragonal transition in CH3NH3PbA3. J. Korean Phys. Soc. 42, S1026–S1029 (2003).

    CAS  Google Scholar 

  12. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    CAS  Google Scholar 

  13. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang: Electron-hole diffusion lengths >175 μm in solution grown CH3NH3Pbl3 single crystals. Science 347, 967–970 (2015).

    CAS  Google Scholar 

  14. Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, G. Liu, H. Xia, and X. Tao: Bulk crystal growth of hybrid perovskite material CH3NH3Pbl3. CrystEngComm, 17, 665–670 (2014).

    Google Scholar 

  15. Y. Tidhar, E. Edri, H. Weissman, D. Zohar, G. Hodes, D. Cahen, B. Rybtchinski, and S. Kirmayer: Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136, 13249–13256 (2014).

    CAS  Google Scholar 

  16. P. Zhao, J. Xu, X. Dong, L. Wang, W. Ren, L. Bian, and A. Chang: Large-size CH3NH3PbBr3 single crystal: growth and in situ characterization of the photophysics properties. J. Phys. Chem. Lett. 6, 2622–2628 (2015). doi: 10.1021/acs.jpclett.5b01017.

    CAS  Google Scholar 

  17. C.C. Stoumpos, C.D. Malliakas, J.A. Peters, Z. Liu, M. Sebastian, J. Im, T.C. Chasapis, A.C. Wibowo, D.Y. Chung, A.J. Freeman, B.W. Wessels, and M.G. Kanatzidis: Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).

    CAS  Google Scholar 

  18. X. Li and B. Bhushan: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2002).

    CAS  Google Scholar 

  19. S. Sun, Y. Fang, G. Kieslich, T.J. White, and A.K. Cheetham: Mechanical properties of organic-inorganic halide perovskites, CH3NH3PbX3 (X=I, Br and CI), by nanoindentation. J. Mater. Chem. A 3, 18450–18455 (2015). doi: 10.1039/C5TA03331D.

    CAS  Google Scholar 

  20. L.P. Swainson, M.G. Tucker, D.J. Wilson, B. Winkler, and V. Milman: Pressure response of an organic-inorganic perovskite: methylammo-nium lead bromide. Chem. Mater. 19, 2401–2405 (2007).

    CAS  Google Scholar 

  21. S. Hirotsu, T. Suzuki, and S. Sawada: Ultrasonic velocity around the successive phase transition points of CsPbBr3. J. Phys. Soc. Jpn. 43, 575 (1977).

    CAS  Google Scholar 

  22. M. Rodová, J. Brožek, K. Knfžek, and K. Nitsch: Phase transitions in ternary caesium lead bromide. J. Therm. Anal. Calorim. 71, 667–673 (2003).

    Google Scholar 

  23. M.F. Ashby: Materials Selection in Mechanical Design (Elsevier/ Butterworth-Heinemann, Amsterdam, 2011).

    Google Scholar 

  24. D.A. Egger and L. Kronik: Role of dispersive interactions in determining structural properties of organic-inorganic halide perovskites: insights from first-principles calculations. J. Phys. Chem. Lett. 5, 2728–2733 (2014).

    CAS  Google Scholar 

  25. J. Feng: Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X=Br, I) perovskites for solar cell absorbers. APL Mater. 2, 081801 (2014).

    Google Scholar 

  26. G. Murtaza and I. Ahmad: First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M=CI, Br, I). Phys. B: Condens. Maffer 406, 3222–3229 (2011).

    CAS  Google Scholar 

  27. Y.-R. Luo: Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton, FL, 2007).

    Google Scholar 

  28. W. Veiga and C.M. Lepienski: Nanomechanical properties of lead iodide (Pbl2) layered crystals. Mater. Sci. Eng. A 335, 6–13 (2002).

    Google Scholar 

  29. M.J. Weber: CRC Handbook of Laser Science and Technology Supplement 2: Optical Materials (CRC Press, Boca Raton, FL, 1994).

    Google Scholar 

  30. V.S. Bhadram, D. Swain, R. Dhanya, M. Polentarutti, A. Sundaresan, and C. Narayana: Effect of pressure on octahedral distortions in RCrO3 (R = Lu, Tb, Gd, Eu, Sm): the role of R-ion size and its implications. Mater. Res. Express 1, 026111 (2014).

    Google Scholar 

  31. A.S. Verma and A. Kumar: Bulk modulus of cubic perovskites. J. Alloys Compd. 541, 210–214 (2012).

    CAS  Google Scholar 

  32. A. Pisoni, J. Jaćimović, O.S. Barisic, M. Spina, R. Gaal, L. Forró, and E. Horváth: Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3Pbl3. J. Phys. Chem. Lett. 5, 2488–2492 (2014).

    CAS  Google Scholar 

  33. K. Nakamura, S. Yamada, and T. Ohnuma: Energetic stability and thermoelectric property of alkali-metal-encapsulated type-l silicon-clathrate from first-principles calculation. Mater. Trans. 54, 276–285 (2013).

    CAS  Google Scholar 

  34. F. Sui, H. He, S. Bobev, J. Zhao, F.E. Osterloh, and S.M. Kauzlarich: Synthesis, structure, thermoelectric properties, and band gaps of alkali metal containing type I clathrates: A8Ga8Si38 (A=K, Rb, Cs) and K8Al8Si38. Chem. Mater. 27, 2812–2820 (2015).

    CAS  Google Scholar 

  35. A.J. Karttunen, V.J. Härkönen, M. Linnolahti, and T.A. Pakkanen: Mechanical properties and low elastic anisotropy of semiconducting group 14 Clathrate frameworks. J. Phys. Chem. C 115, 19925–19930 (2011).

    CAS  Google Scholar 

  36. J.M. Azpiroz, E. Mosconi, J. Bisquert, and F.D. Angelis: Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    CAS  Google Scholar 

  37. D.A. Egger, L. Kronik, and A.M. Rappe: Theory of hydrogen migration in organic-inorganic halide perovskites. Angew. Chem. Int. Ed. 54, 1–5 (2015). doi: 10.1002/anie.201502544.

    Google Scholar 

  38. C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    CAS  Google Scholar 

  39. Y. Lee, D.B. Mitzi, P.W. Barnes, and T. Vogt: Pressure-induced phase transitions and templating effect in three-dimensional organic-inorganic hybrid perovskites. Phys. Rev. B 68, 020103 (2003).

    Google Scholar 

  40. W.M. Sears, M.L. Klein, and J.A. Morrison: Polytypism and the vibrational properties of Pbl2. Phys. Rev. B 19, 2305–2313 (1979).

    CAS  Google Scholar 

  41. K. Nitsch and M. Rodová: Thermomechanical measurements of lead halide single crystals. Phys. Status Solidi B 234, 701–709 (2002).

    CAS  Google Scholar 

  42. J.E. Ni, E.D. Case, K.N. Khabir, R.C. Stewart, C.-I. Wu, T.P. Hogan, E.J. Timm, S.N. Girard, and M.G. Kanatzidis: Room temperature Young’s modulus, shear modulus, Poisson’s ratio and hardness of PbTe-PbS thermoelectric materials. Mater. Sci. Eng. B 170, 58–66 (2010).

    CAS  Google Scholar 

  43. M.S. Darrow, W.B. White, and R. Roy: Micro-indentation hardness variation as a function of composition for polycrystalline solutions in the systems PbS/PbTe, PbSe/PbTe, and PbS/PbSe. J. Mater. Sci. 4, 313–319 (1969).

    CAS  Google Scholar 

  44. B. Houston, R.E. Strakna, and H.S. Belson: Elastic constants, thermal expansion, and Debye temperature of lead telluride. J. Appl. Phys. 39, 3913–3916 (1968).

    CAS  Google Scholar 

  45. M. Pang, D.F. Bahr, and K.G. Lynn: Effects of Zn addition and thermal annealing on yield phenomena of CdTe and Cd0.96Zn0.04 Te single crystals by nanoindentation. Appl. Phys. Lett. 82, 1200–1202 (2003).

    CAS  Google Scholar 

  46. S. Luo, J.-H. Lee, C.-W. Liu, J.-M. Shieh, C.-H. Shen, T.-T. Wu, D. Jang, and J.R. Greer: Strength, stiffness, and microstructure of Cu(ln,Ga)Se2 thin films deposited via sputtering and co-evaporation. Appl. Phys. Lett. 105, 011907 (2014).

    Google Scholar 

  47. Y.-C. Lin, X.-Y. Peng, L.-C. Wang, Y.-L. Lin, C.-H. Wu, and S.-C Liang: Residual stress in CIGS thin film solar cells on polyimide: simulation and experiments. J. Mater. Sci. Mater. Electron. 25, 461–465 (2014).

    CAS  Google Scholar 

  48. S.E. Grillo, M. Ducarroir, M. Nadal, E. Tournié, and J.-P. Faurie: Nanoindentation of Si, GaP, GaAs and ZnSe single crystals. J. Phys. Appl. Phys. 36, L5 (2003).

    CAS  Google Scholar 

  49. L. Kinsler, A.R. Frey, A.B. Coppens, and J.V. Sanders: Fundamentals of Acoustics, 4th ed. (Wiley, New York, 2000) WW_marcado. Scribd at https://www.scribd.com/doc/39846878/Fundamentals-of-Acoustics-4th-Ed-L-Kinsler-Et-AI-Wiley-2000-WW-marcado (accessed August 10th, 2015).

    Google Scholar 

Download references

Acknowledgments

D.C. thanks Leeor Kronik for drawing his attention to this experimental approach. We thank Milko van der Boom and Xiaomeng Sui for helpful discussions. This work was supported by the Israel Science Foundation, the Israel Ministry of Science, and the Israel National Nano-Initiative. D.C. holds the Sylvia and Rowland Schaefer Chair in Energy Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sidney R. Cohen or David Cahen.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.69

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakita, Y., Cohen, S.R., Kedem, N.K. et al. Mechanical properties of APbX3 (A = Cs or CH3NH3; X= I or Br) perovskite single crystals. MRS Communications 5, 623–629 (2015). https://doi.org/10.1557/mrc.2015.69

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.69

Navigation