Skip to main content
Log in

Energetics of substituted polyhedral oligomeric silsesquioxanes: a DFT study

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

First principles density functional theory calculations were conducted to investigate the structures and energetics of polyhedral oligomeric silsesquioxane (POSS) molecules with varying aluminum and alkali (sodium or potassium) concentrations. Notable trends emerge from this study namely, (1) the thermodynamic stability of the substituted POSS molecules is critically dependent on the interplay between size and composition of the POSS structures, and (2) larger POSS structures provide lower central electron density and hence better accommodate the central alkali atom. These observations, when viewed in the context of aluminosilicate based geopolymers, provide fundamental insights into the relations that describe the structure composition interplay of their underlying monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table I
Table II
Figure 3
Table III

Similar content being viewed by others

References

  1. D.W. Scott: Thermal rearrangement of branched-chain methylpolysiloxanes. J. Am. Chem. Soc. 68, 356 (1946).

    Article  CAS  Google Scholar 

  2. Q. Zhang, H. He, K. Xi, X. Huang, X. Yu, and X. Jia: Synthesis of N-Phenylaminomethyl POSS and its utilization in polyurethane. Macromolecules 44, 550 (2011).

    Article  CAS  Google Scholar 

  3. S.E. Anderson, E.S. Baker, C. Mitchell, T.S. Haddad, and M.T. Bowers: Structure of hybrid polyhedral oligomeric silsesquioxane propyl methacrylate oligomers using ion mobility mass spectrometry and molecular mechanics. Chem. Mater. 17, 2537 (2005).

    Article  CAS  Google Scholar 

  4. F.J. Feher and D.A. Newman: Enhanced silylation reactivity of a model for silica surfaces. J. Am. Chem. Soc. 112, 1931 (1990).

    Article  CAS  Google Scholar 

  5. F.J. Feher, D.A. Newman, and J.F. Walzer: Silsesquioxanes as models for silica surfaces. J. Am. Chem. Soc. 111, 1741 (1989).

    Article  CAS  Google Scholar 

  6. N.P. Hacker: Organic and inorganic spin-on polymers for low-dielectric-constant applications. MRS Bull. 22, 33 (1997).

    Article  CAS  Google Scholar 

  7. C. Jin, J.D. Luttmer, D.M. Smith, and T.A. Ramos: Nanoporous silica as an ultralow-k dielectric. MRS Bull. 22, 39 (1997).

    Article  CAS  Google Scholar 

  8. F.J. Feher and T.L. Tajima: Synthesis of a molybdenum-containing silsesquioxane which rapidly catalyzes the metathesis of olefins. J. Am. Chem. Soc. 116, 2145 (1994).

    Article  CAS  Google Scholar 

  9. F.J. Feher, J.F. Walzer, and R.L. Blanski: Olefin polymerization by vanadium-containing polyhedral oligometallasilsesquioxanes. J. Am. Chem. Soc. 113, 3618 (1991).

    Article  CAS  Google Scholar 

  10. F.J. Feher: Polyhedral oligometallasilsesquioxanes (POMSS) as models for silica-supported transition-metal catalysts. Synthesis and characterization of (C5Me5)Zr[(Si7O12)(c-C6H11)7]. J. Am. Chem. Soc. 108, 3850 (1986).

    Article  CAS  Google Scholar 

  11. F.T. Edelmann: Model compounds for metal oxides on SiO2 surfaces. Angew. Chem. Int. Ed. 31, 586 (1992).

    Article  Google Scholar 

  12. W.A. Herrmann, R. Anwander, V. Dufaud, and W. Scherer: Molecular siloxane complexes of rare earth metals—model systems for silicate-supported catalysts?Angew. Chem. Int. Ed. 33, 1285 (1994).

    Article  Google Scholar 

  13. J. Davidovits: Geopolymer Chemistry and Applications, 3rd ed. (Institut Geopolymere, Saint-Quentin, 2011).

    Google Scholar 

  14. J.L. Provis and J.S.J. van Deventer: Geopolymers: Structures, Processing, Properties and Industrial Applications (Woodhead Publishing Limited, Cambridge, 2009).

    Book  Google Scholar 

  15. P. Duxson, J.L. Provis, G.C. Lukey, and J.S.J. van Deventer: The role of inorganic polymer technology in the development of green concrete. Cem. Concr. Res. 37, 1590 (2007).

    Article  CAS  Google Scholar 

  16. P. Duxson, A. Fernandez-Jimenez, J.L. Provis, G.C. Lukey, A. Palomo, and J.S.J. van Deventer: Geopolymer technology: the current state of the art. J. Mater. Sci. 42, 2917 (2007).

    Article  CAS  Google Scholar 

  17. Gaussian 09, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox: (Gaussian, Inc., Wallingford, CT, 2009).

  18. A.D. Becke: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  19. C.T. Lee, W.T. Yang, and R.G. Parr: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  20. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  21. X. Li and M.J. Frisch: Energy-represented DIIS within a hybrid geometry optimization method. J. Chem. Theory Comput. 2, 835 (2006).

    Article  CAS  Google Scholar 

  22. T. Baudilio and M.S. Gordon: Insertion mechanism of N2 and O2 into Tn(n = 8, 10, 12)-silsesquioxane Framework. J. Phys. Chem. B 106, 11764 (2002).

    Article  Google Scholar 

  23. K.W. Törnroos: Structure of octahydridosilasesquioxane determined by neutron diffraction. Acta Cryst. C50, 1646 (1994).

    Google Scholar 

  24. K.-H. Xiang, R. Pandey, U.C. Pernisz, and C. Freeman: Theoretical study of structural and electronic properties of H-silsesquioxanes. J. Phys. Chem. B 102, 8704 (1998).

    Article  CAS  Google Scholar 

  25. C.W. Earley: A quantum mechanical investigation of silsesquioxane cages. J. Phys. Chem. 98, 8693 (1994).

    Article  CAS  Google Scholar 

  26. T.P.E. Heyde, H.-B. Bürgi, H. Bürgi, and K.W. Törnroos: The crystal and molecular structure of the symmetrical silasesquioxane H8Si8O12 at 100 K, a molecular building block of some zeolites. Chimica 45, 38 (1991).

    Google Scholar 

  27. K.W. Törnroos, H.-B. Bürgi, G. Calzaferri, and H. Bürgy: The crystal and molecular structure of dodecahydridosilasesquioxane, H12Si12O18. Acta Cryst. B51, 155 (1995).

    Article  Google Scholar 

  28. C. Gatti, G. Ottonello, and P. Richet: Energetics and bonding in aluminosilicate rings with alkali metal and alkaline-earth metal charge-compensating cations. J. Phys. Chem. A 116, 8584 (2012).

    Article  CAS  Google Scholar 

  29. Y. Xiang, J. Du, M.M. Smedskjaer, and J.C. Mauro: Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations. J. Chem. Phys. 139, 044507 (2013).

    Article  Google Scholar 

  30. M. Bauchy: Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential. J. Chem. Phys. 141, 024507 (2014).

    Article  CAS  Google Scholar 

  31. W. Loewenstein: The distribution of aluminum in the tetrahedra of silicates and aluminate. Am. Mineral. 39, 92 (1954).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors (A. A, K. M) would like to acknowledge financial support from NIOSH (Grant: 200-2014-59953).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Asaduzzaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaduzzaman, A., Runge, K., Muralidharan, K. et al. Energetics of substituted polyhedral oligomeric silsesquioxanes: a DFT study. MRS Communications 5, 519–524 (2015). https://doi.org/10.1557/mrc.2015.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.58

Navigation