Skip to main content
Log in

Effect of temperature and strain rate on the mechanisms of indentation deformation of magnesium

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Dual-stage, constant loading-rate followed by constant-load, pyramidal indentation experiments were performed to investigate the strain-rate (105-101/s) and temperature (295-573 K) dependence of pure magnesium. The estimated total activation energy, Q (0.69-1.01 eV), and apparent activation volume, V (17-28b3), indicate that plastic deformation is controlled by a dislocation cross-slip mechanism. The results from this work and previous studies confirm that, during pyramidal indentation of Mg, the operative deformation mechanism remains the same over a very wide strain-rate and temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. H. Somekawa and C.A. Schuh: Nanoindentation behavior and deformed microstructures in coarse-grained magnesium alloys. Scr. Mater. 68, 416–419 (2013).

    Article  CAS  Google Scholar 

  2. C.L. Wang, T. Mukai, and T.G. Nieh: Room temperature creep of fine-grained pure Mg: a direct comparison between nanoindentation and uniaxial tension. J. Mater. Res. 24, 1615–1618 (2009).

    Article  CAS  Google Scholar 

  3. V. Sklenička, M. Pahutová, K. Kuchartová, M. Svoboda, and T.G. Langdon: Creep processes in magnesium alloys and their composites. Metall. Mater. Trans. A. 33, 883–889 (2002).

    Article  Google Scholar 

  4. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 49, 4277–4289 (2001).

    Article  CAS  Google Scholar 

  5. C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, F. Carreño, and M.T. Pérez-Prado: Prominent role of basal slip during high-temperature deformation of pure Mg polycrystals. Acta Mater. 85, 1–13 (2015).

    Article  Google Scholar 

  6. H. Somekawa and C.A. Schuh: High-strain-rate nanoindentation behavior of fine-grained magnesium alloys. J. Mater. Res. 27, 1295–1302 (2012).

    Article  CAS  Google Scholar 

  7. H. Somekawa and C.A. Schuh: Effect of solid solution elements on nanoindentation hardness, rate dependence, and incipient plasticity in fine grained magnesium alloys. Acta Mater. 59, 7554–7563 (2011).

    Article  CAS  Google Scholar 

  8. D. Catoor, Y.F. Gao, J. Geng, M.J.N.V. Prasad, E.G. Herbert, and K.S. Kumar: Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation. Acta Mater. 61, 2953–2965 (2013).

    Article  CAS  Google Scholar 

  9. K. Ito: The hardness of metals as affected by temperature. Tohoku Sci. Reports 12, 137 (1923).

    CAS  Google Scholar 

  10. J.H. Westbrook: Temperature dependence of the hardness of pure metals. Trans. A.S.M. 45, 221 (1953).

    Google Scholar 

  11. V. Bhakhri, J. Wang, N. Ur-rehman, C. Ciurea, F. Giuliani, and L.J. Vandeperre: Instrumented nanoindentation investigation into the mechanical behavior of ceramics at moderately elevated temperatures. J. Mater. Res. 27, 65–75 (2012).

    Article  CAS  Google Scholar 

  12. U.F. Kocks, A.S. Argon, and F. Ashby: Thermodynamics and Kinetics of Slip (Pergamon Press, Oxford, 1975).

    Google Scholar 

  13. H. Watanabe, A. Owashi, T. Uesugi, Y. Takigawa, and K. Higashi: Grain boundary relaxation in fine-grained magnesium solid solutions. Philos. Mag. 91, 4158–4171 (2011).

    Article  CAS  Google Scholar 

  14. H.J. Frost and F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982).

    Google Scholar 

  15. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, and K. Maruyama: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51, 2055–2065 (2003).

    Article  CAS  Google Scholar 

  16. V.A. Lubarda, M.A. Meyers, and O. Vo: The onset of twinning in metals: a constitutive description. Acta Mater. 49, 4025–4039 (2001).

    Article  Google Scholar 

  17. T.-S. Shih and Z.-B. Liu: Thermally-formed oxide on aluminum and magnesium. Mater. Trans. 47, 1347–1353 (2006).

    Article  CAS  Google Scholar 

  18. A. Galiyev, R. Kaibyshev, and G. Gottstein: Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater. 49, 1199–1207 (2001).

    Article  CAS  Google Scholar 

  19. V. Maier, B. Merle, M. Göken, and K. Durst: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J. Mater. Res. 28, 1177–1188 (2013).

    Article  CAS  Google Scholar 

  20. D. Tabor: The Hardness of Metals (Oxford University Press, Oxford, 2000).

    Google Scholar 

Download references

Acknowledgments

Authors wish to thank the Natural Science and Engineering Research Council (NSERC) for providing financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bhakhri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghshenas, M., Bhakhri, V., Oviasuyi, R. et al. Effect of temperature and strain rate on the mechanisms of indentation deformation of magnesium. MRS Communications 5, 513–518 (2015). https://doi.org/10.1557/mrc.2015.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.57

Navigation