Skip to main content
Log in

Polymer films of nanoscale thickness: linear chain and star-shaped macromolecular architectures

  • Polymers/Soft Matter Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Applications of polymer thin films include functional coatings, flexible electronics, membranes and energy conversion. The physical properties of polymer films of nanoscale thicknesses typically differ from the bulk, due largely to entropic effects and to enthalpic interactions between the macromolecules and the external interfaces. Studies of the size-dependent physical properties of macromolecules have largely been devoted to linear chain polymers. In this Prospective, we review recent experiments and simulations that describe the structure and fascinating physical properties, from wetting to the glass transition, of star-shaped macromolecules. The properties of these molecules would render them more useful than their linear chain analogs, for some specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. J.L. Keddie, R.A.L. Jones, and R.A. Cory: Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday Discuss. 98, 219 (1994).

    Article  CAS  Google Scholar 

  2. J.L. Keddie, R.A.L. Jones, and R.A. Cory: Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27, 59 (1994).

    Article  CAS  Google Scholar 

  3. J.A. Forrest and K. Dalnoki-Veress: The glass transition in thin polymer films. Adv. Colloid Interface Sci. 94, 167 (2001).

    Article  CAS  Google Scholar 

  4. Z.H. Yang, Y. Fujii, F.K. Lee, C.H. Lam, and O.K.C. Tsui: Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328, 1676 (2010).

    Article  CAS  Google Scholar 

  5. R.D. Priestley, C.J. Ellison, L.J. Broadbelt, and J.M. Torkelson: Structural relaxation of polymer glasses at surfaces, interfaces and in between. Science 309, 456 (2005).

    Article  CAS  Google Scholar 

  6. M. Alcoutlabi and G.B. Mckenna: Effects of confinement on material behaviour at the nanometre size scale. J. Phys.: Condens. Matter 17, R461 (2005).

    CAS  Google Scholar 

  7. T. Kanaya: Glass transition, dynamics and heterogeneity of polymer thin films preface, in Glass Transition, Dynamics and Heterogeneity of Polymer Thin Films, edited by T. Kanaya (Springer-Verlag Berlin, Berlin, 2013) pp. V.

    Chapter  Google Scholar 

  8. J. Baschnagel and F. Varnik: Computer simulations of supercooled polymer melts in the bulk and in-confined geometry. J. Phys.: Condens. Matter 17, R851 (2005).

    CAS  Google Scholar 

  9. J.E.G. Lipson and S.T. Milner: Percolation model of interfacial effects in polymeric glasses. Eur. Phys. J. B 72, 133 (2009).

    Article  CAS  Google Scholar 

  10. D. Long and F. Lequeux: Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4, 371 (2001).

    Article  CAS  Google Scholar 

  11. J.D. Mccoy and J.G. Curro: Conjectures on the glass transition of polymers in confined geometries. J. Chem. Phys. 116, 9154 (2002).

    Article  CAS  Google Scholar 

  12. J. Mittal, P. Shah, and T.M. Truskett: Using energy landscapes to predict the properties of thin films. J. Phys. Chem. B 108, 19769 (2004).

    Article  CAS  Google Scholar 

  13. C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. Vanlandingham, H.C. Kim, W. Volksen, R.D. Miller, and E.E. Simonyi: A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3, 545 (2004).

    Article  CAS  Google Scholar 

  14. P.A. O’connell, S.A. Hutcheson, and G.B. Mckenna: Creep behavior of ultra-thin polymer films. J. Polym. Sci. B: Polym. Phys. 46, 1952 (2008).

    Article  CAS  Google Scholar 

  15. M.S. Mccaig and D.R. Paul: Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part I. Experimental observations. Polymer 41, 629 (2000).

    Article  CAS  Google Scholar 

  16. M.S. Mccaig, D.R. Paul, and J.W. Barlow: Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part II. Mathematical model. Polymer 41, 639 (2000).

    Article  CAS  Google Scholar 

  17. B.Y. Huang, E. Glynos, B. Frieberg, H.X. Yang, and P.F. Green: Effect of thickness-dependent microstructure on the out-of-plane hole mobility in poly(3-Hexylthiophene) films. ACS Appl. Mater. Interfaces 4, 5204 (2012).

    Article  CAS  Google Scholar 

  18. H.X. Yang, E. Glynos, B.Y. Huang, and P.F. Green: Out-of-plane carrier transport in conjugated polymer thin films: role of morphology. J. Phys. Chem. C 117, 9590 (2013).

    Article  CAS  Google Scholar 

  19. B.X. Dong, B.Y. Huang, A. Tan, and P.F. Green: Nanoscale orientation effects on carrier transport in a low-band-gap polymer. J. Phys. Chem. C 118, 17490 (2014).

    Article  CAS  Google Scholar 

  20. M. Bank, C. Thies, and J Leffingw: Thermally induced phase separation of polystyrene-poly(vinyl methyl-ether) mixtures. J. Polym. Sci. B: Polym. Phys. 10, 1097 (1972).

    Article  CAS  Google Scholar 

  21. M.M. Coleman, J.F. Graf, and P.C. Painter: Specific Interactions and the Miscibility of Polymer Blends (Technomic Publishing, Lancaster, PA, 1991).

    Google Scholar 

  22. M.M. Coleman and P.C. Painter: Hydrogen-bonded polymer blends. Prog. Polym. Sci. 20, 1 (1995).

    Article  CAS  Google Scholar 

  23. J. Dudowicz and K.F. Freed: Effect of monomer structure and compressibility on the properties of multicomponent polymer blends and solutions. 1. Lattice cluster theory of compressible systems. Macromolecules 24, 5076 (1991).

    Article  CAS  Google Scholar 

  24. J. Dudowicz and K.F. Freed: Effect of monomer structure and compressibility on the properties of multicomponent polymer blends and solutions3. Application to PS(D) PVME blends. Macromolecules 24, 5112 (1991).

    Article  CAS  Google Scholar 

  25. G. Coulon, T.P. Russell, V.R. Deline, and P.F. Green: Surface-induced orientation of symmetric, Diblock copolymers—a secondary ion mass-spectrometry study. Macromolecules 22, 2581 (1989).

    Article  CAS  Google Scholar 

  26. K.R. Shull: Mean-field theory of block copolymers—bulk melts, surfaces, and thin-films. Macromolecules 25, 2122 (1992).

    Article  CAS  Google Scholar 

  27. A. Menelle, T.P. Russell, S.H. Anastasiadis, S.K. Satija, and C.F. Majkrzak: Ordering of thin Diblock copolymer films. Phys. Rev. Lett. 68, 67 (1992).

    Article  CAS  Google Scholar 

  28. E. Glynos, A. Chremos, B. Frieberg, G. Sakellariou, and P.F. Green: Wetting of macromolecules: from linear chain to soft colloid-like behavior. Macromolecules 47, 1137 (2014).

    Article  CAS  Google Scholar 

  29. E. Glynos, B. Frieberg, and P.F. Green: Wetting of a multiarm star-shaped molecule. Phys. Rev. Lett. 107, 118303 (2011).

    Article  CAS  Google Scholar 

  30. E. Glynos, B. Frieberg, H. Oh, M. Liu, D.W. Gidley, and P.F. Green: Role of molecular architecture on the vitrification of polymer thin films. Phys. Rev. Lett. 106, 128301 (2011).

    Article  CAS  Google Scholar 

  31. E. Glynos, B. Frieberg, A. Chremos, G. Sakellariou, D.W. Gidley, and P.F. Green: Vitrification of thin polymer films: from linear chain to soft colloid-like behavior. Macromolecules 48, 2305 (2015).

    Article  CAS  Google Scholar 

  32. B. Frieberg, E. Glynos, and P.F. Green: Structural relaxations of thin polymer films. Phys. Rev. Lett. 108, 268304 (2012).

    Article  CAS  Google Scholar 

  33. B. Frieberg, E. Glynos, G. Sakellariou, and P.F. Green: Physical aging of star-shaped macromolecules. ACS Macro Lett. 1, 636 (2012).

    Article  CAS  Google Scholar 

  34. S.F. Wang, Z. Jiang, S. Narayanan, and M.D. Foster: Dynamics of surface fluctuations on macrocyclic melts. Macromolecules 45, 6210 (2012).

    Article  CAS  Google Scholar 

  35. S.F. Wang, S. Yang, J. Lee, B. Akgun, D.T. Wu, and M.D. Foster: Anomalous surface relaxations of branched-polymer melts. Phys. Rev. Lett. 111, 068303 (2013).

    Article  CAS  Google Scholar 

  36. D. Vlassopoulos and G. Fytas: From polymers to colloids: engineering the dynamic properties of hairy particles, in High Solid Dispersions, edited by M. Cloitre (Springer-Verlag, Berlin, 2010), pp. 1.

    Google Scholar 

  37. A. Chremos, E. Glynos, and P.F. Green: Structure and dynamical intra-molecular heterogeneity of star polymer melts above glass transition temperature. J. Chem. Phys. 142, 044901 (2015).

    Article  CAS  Google Scholar 

  38. D.S. Pearson and E. Helfand: Viscoelastic properties of star-shaped polymers. Macromolecules 17, 888 (1984).

    Article  CAS  Google Scholar 

  39. P.G. Degennes and P. Pincus: scaling theory of polymer adsorption—proximal exponent. J. Phys. Lett. 44, L241 (1983).

    Article  Google Scholar 

  40. M. Rubinstein and R.H. Colby: Polymer Physics (Oxford University Press, New York, 2003).

    Google Scholar 

  41. D.Y. Yoon, M. Vacatello, and G.D. Smith: Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford University Press, New York, 1995).

    Google Scholar 

  42. T.K. Xia, O.Y. Jian, M.W. Ribarsky, and U. Landman: Interfacial alkane films. Phys. Rev. Lett. 69, 1967 (1992).

    Article  CAS  Google Scholar 

  43. O. Borodin, G.D. Smith, R. Bandyopadhyaya, and E. Byutner: Molecular dynamics study of the influence of solid interfaces on poly(ethylene oxide) structure and dynamics. Macromolecules 36, 7873 (2003).

    Article  CAS  Google Scholar 

  44. K.C. Daoulas, V.A. Harmandaris, and V.G. Mavrantzas: Detailed atomistic simulation of a polymer melt/solid interface: structure, density, and conformation of a thin film of polyethylene melt adsorbed on graphite. Macromolecules 38, 5780 (2005).

    Article  CAS  Google Scholar 

  45. D.N. Theodorou: Variable-density model of polymer melt solid interfaces—structure, adhesion tension, and surface forces. Macromolecules 22, 4589 (1989).

    Article  CAS  Google Scholar 

  46. K.F. Mansfield and D.N. Theodorou: Molecular-dynamics simulation of a glassy polymer surface. Macromolecules 24, 6283 (1991).

    Article  CAS  Google Scholar 

  47. D.M. Sussman, W.-S. Tung, K.I. Winey, K.S. Schweizer, and R.A. Riggleman: Entanglement Reduction and anisotropic chain and primitive path conformations in polymer melts under thin film and cylindrical confinement. Macromolecules 47, 6462 (2014).

    Article  CAS  Google Scholar 

  48. C.H. Ye, C.G. Wiener, M. Tyagi, D. Uhrig, S.V. Orski, C.L. Soles, B.D. Vogt, and D.S. Simmons: Understanding the decreased segmental dynamics of supported thin polymer films reported by incoherent neutron scattering. Macromolecules 48, 801 (2015).

    Article  CAS  Google Scholar 

  49. C. Soles, J. Douglas, W.L. Wu, and R. Dimeo: Incoherent neutron scattering and the dynamics of confined polycarbonate films. Phys. Rev. Lett. 88, 037401 (2002).

    Article  CAS  Google Scholar 

  50. C.L. Soles, J.F. Douglas, and W.-L. Wu: Dynamics of thin polymer films: recent insights from incoherent neutron scattering. J. Polym. Sci. B: Polym. Phys. 42, 3218 (2004).

    Article  CAS  Google Scholar 

  51. S. Napolitano, S. Capponi, and B. Vanroy: Glassy dynamics of soft matter under 1D confinement: how irreversible adsorption affects molecular packing, mobility gradients and orientational polarization in thin films. Eur. Phys. J. E 36, 61 (2013).

    Article  CAS  Google Scholar 

  52. S. Napolitano and M. Wubbenhorst: The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat. Commun. 2, 260 (2011).

    Article  CAS  Google Scholar 

  53. C.L. Soles, J.F. Douglas, W.L. Wu, H.G. Peng, and D.W. Gidley: Comparative specular x-ray reflectivity, positron annihilation lifetime spectroscopy, and incoherent neutron scattering measurements of the dynamics in thin polycarbonate films. Macromolecules 37, 2890 (2004).

    Article  CAS  Google Scholar 

  54. L. Yelash, P. Virnau, K. Binder, and W. Paul: Three-step decay of time correlations at polymer-solid interfaces. Eerophys. Lett. 98, 5 (2012).

    Google Scholar 

  55. S. Peter, H. Meyer, and J. Baschnagel: Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. I. Equilibrium properties near the glass transition. J. Chem. Phys. 131, 7 (2009).

    Google Scholar 

  56. P.Z. Hanakata, J.F. Douglas, and F.W. Starr: Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films. Nat. Commun. 5, 8 (2014).

    Article  CAS  Google Scholar 

  57. Y. Chai, T. Salez, J.D. Mcgraw, M. Benzaquen, K. Dalnoki-Veress, E. Raphaël, and J.A. Forrest: A direct quantitative measure of surface mobility in a glassy polymer. Science 343, 994 (2014).

    Article  CAS  Google Scholar 

  58. P.G. De Gennes: Glass transitions in thin polymer films. Eur. Phys. J. E 2, 201 (2000).

    Article  Google Scholar 

  59. M.D. Ediger and J.A. Forrest: Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 47, 471 (2013).

    Article  CAS  Google Scholar 

  60. C.J. Ellison and J.M. Torkelson: The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695 (2003).

    Article  CAS  Google Scholar 

  61. Z. Fakhraai and J.A. Forrest: Measuring the surface dynamics of glassy polymers. Science 319, 600 (2008).

    Article  CAS  Google Scholar 

  62. K. Paeng, S.F. Swallen, and M.D. Ediger: Direct measurement of molecular motion in freestanding polystyrene thin films. J. Am. Chem. Soc. 133, 8444 (2011).

    Article  CAS  Google Scholar 

  63. J.E. Pye and C.B. Roth: Two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films as measured by transmission ellipsometry. Phys. Rev. Lett. 107, 5 (2011).

    Article  CAS  Google Scholar 

  64. J.A. Torres, P.F. Nealey, and J.J. De Pablo: Molecular simulation of ultrathin polymeric films near the glass transition. Phys. Rev. Lett. 85, 3221 (2000).

    Article  CAS  Google Scholar 

  65. F. Lange, P. Judeinstein, C. Franz, B. Hartmann-Azanza, S. Ok, M. Steinhart, and K. Saalwächter: Large-scale diffusion of entangled polymers along nanochannels. ACS Macro Lett. 4, 561 (2015).

    Article  CAS  Google Scholar 

  66. D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley: Wetting and spreading. Rev. Mod. Phys. 81, 739 (2009).

    Article  CAS  Google Scholar 

  67. P.G. De Gennes, F. Brochard-Wyart, and D. Quere: Capillarity and Wetting Phenomena (Springer-Verlag, New York, Inc., New York, 2004).

    Book  Google Scholar 

  68. P.G. Degennes: Wetting—statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).

    Article  CAS  Google Scholar 

  69. L. Leger and J.F. Joanny: Liquid spreading. Rep. Prog. Phys. 55, 431 (1992).

    Article  CAS  Google Scholar 

  70. T. Young: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65 (1805).

    Google Scholar 

  71. A. Striolo and J.M. Prausnitz: Adsorption of branched homopolymers on a solid surface. J. Chem. Phys. 114, 8565 (2001).

    Article  CAS  Google Scholar 

  72. V.S. Minnikanti and L.A. Archer: Entropic attraction of polymers toward surfaces and its relationship to surface tension. Macromolecules 39, 7718 (2006).

    Article  CAS  Google Scholar 

  73. Z.Y. Qian, V.S. Minnikanti, B.B. Sauer, G.T. Dee, and L.A. Archer: Surface tension of symmetric star polymer melts. Macromolecules 41, 5007 (2008).

    Article  CAS  Google Scholar 

  74. M.K. Kosmas: Ideal polymer-chains of various architectures at a surface. Macromolecules 23, 2061 (1990).

    Article  CAS  Google Scholar 

  75. A. Chremos, P.J. Camp, E. Glynos, and V. Koutsos: Adsorption of star polymers: computer simulations. Soft Matter 6, 1483 (2010).

    Article  CAS  Google Scholar 

  76. J.A. Forrest, K. Dalnokiveress, and J.R. Dutcher: Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys. Rev. E 56, 5705 (1997).

    Article  CAS  Google Scholar 

  77. J.A. Forrest, K. Dalnokiveress, J.R. Stevens, and J.R. Dutcher: Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002 (1996).

    Article  CAS  Google Scholar 

  78. J.A. Forrest and J. Mattsson: Reductions of the glass transition temperature in thin polymer films: Probing the length scale of cooperative dynamics. Phys. Rev. E 61, R53 (2000).

    Article  CAS  Google Scholar 

  79. M.D. Ediger and J.A. Forrest: Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 47, 471 (2014).

    Article  CAS  Google Scholar 

  80. S. Kawana and R.a.L. Jones: Character of the glass transition in thin supported polymer films. Phys. Rev. E 63, 021401 (2001).

    Article  CAS  Google Scholar 

  81. R. Priestley, M.K. Mundra, N.J. Barnett, L.J. Broadbelt, and J.M. Torkelson: Effects of nanoscale confinement and interfaces on the glass transition temperatures of a series of poly(n-methacrylate) films. Aust. J. Chem. 60, 765 (2007).

    Article  CAS  Google Scholar 

  82. J.H. Kim, J. Jang, and W.C. Zin: Thickness dependence of the glass transition temperature in thin polymer films. Langmuir 17, 2703 (2001).

    Article  CAS  Google Scholar 

  83. J.Q. Pham and P.F. Green: The glass transition of thin film polymer/polymer blends: interfacial interactions and confinement. J. Chem. Phys. 116, 5801 (2002).

    Article  CAS  Google Scholar 

  84. J.Q. Pham and P.F. Green: Effective T-g of confined polymer-polymer mixtures. Influence of molecular size. Macromolecules 36, 1665 (2003).

    Article  CAS  Google Scholar 

  85. J.A. Forrest: What can we learn about a dynamical length scale in glasses from measurements of surface mobility?J. Chem. Phys. 139, 084702 (2013).

    Article  CAS  Google Scholar 

  86. A. Shavit and R.A. Riggleman: Influence of backbone rigidity on nanoscale confinement effects in model glass-forming polymers. Macromolecules 46, 5044 (2013).

    Article  CAS  Google Scholar 

  87. S. Mirigian and K.S. Schweizer: Communication: slow relaxation, spatial mobility gradients, and vitrification in confined films. J. Chem. Phys. 141, 5 (2014).

    Article  CAS  Google Scholar 

  88. L.C.E. Struik: Physical Aging in Amorphous Polymers (Elsevier Scientific Publishing Company, Amsterdam, 1978).

    Google Scholar 

  89. J. Zhao, S.L. Simon, and G.B. Mckenna: Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems. Nat. Commun. 4, 6 (2013).

    Google Scholar 

  90. J.P. Bouchaud: Weak ergodicity breaking and aging in disordered-systems. J. Phys. I 2, 1705 (1992).

    Google Scholar 

  91. W.H. Wang: The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487 (2012).

    Article  CAS  Google Scholar 

  92. G.S. Fulcher: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925).

    Article  CAS  Google Scholar 

  93. G. Tammann and W. Hesse: The dependency of viscosity on temperature in hypothermic liquids. Z. Anorg. Allg. Chem. 156, 245 (1926).

    Article  CAS  Google Scholar 

  94. H. Vogel: The temperature dependence law of the viscosity of fluids. Phys. Z. 22, 645 (1921).

    CAS  Google Scholar 

  95. M.L. Williams, R.F. Landel, and J.D. Ferry: Mechanical properties of substances of high molecular weight 19. the temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701 (1955).

    Article  CAS  Google Scholar 

  96. G. Adam and J.H. Gibbs: On temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).

    Article  CAS  Google Scholar 

  97. M.D. Ediger: Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99 (2000).

    Article  CAS  Google Scholar 

  98. L. Berthier and G. Biroli: Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011).

    Article  CAS  Google Scholar 

  99. F.W. Starr, J.F. Douglas, and S. Sastry: The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation. J. Chem. Phys. 138, 12A541 (2013).

    Article  CAS  Google Scholar 

  100. J.M. Hutchinson: Physical aging of polymers. Prog. Polym. Sci. 20, 703 (1995).

    Article  CAS  Google Scholar 

  101. A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, and A.R. Ramos: Isobaric volume and enthalpy recovery of glasses.2. Transparent multi-parameter theory. J. Polym. Sci. B: Polym. Phys. 17, 1097 (1979).

    CAS  Google Scholar 

  102. I.M. Hodge: Physical aging in polymer glasses. Science 267, 1945 (1995).

    Article  CAS  Google Scholar 

  103. G.B. Mckenna: Mechanical rejuvenation in polymer glasses: fact or fallacy?J. Phys.: Condens. Matter 15, S737 (2003).

    CAS  Google Scholar 

  104. E.A. Baker, P. Rittigstein, J.M. Torkelson, and C.B. Roth: Streamlined ellipsometry procedure for characterizing physical aging rates of thin polymer films. J. Polym. Sci. B: Polym. Phys. 47, 2509 (2009).

    Article  CAS  Google Scholar 

  105. A. Shavit and R.A. Riggleman: Physical aging, the local dynamics of glass-forming polymers under nanoscale confinement. J. Phys. Chem. B 118, 9096 (2014).

    Article  CAS  Google Scholar 

  106. K. Paeng and M.D. Ediger: Molecular motion in free-standing thin films of poly(methyl methacrylate), poly(4-tert-butylstyrene), poly(alpha-methylstyrene), and poly(2-vinylpyridine). Macromolecules 44, 7034 (2011).

    Article  CAS  Google Scholar 

  107. T.R. Bohme and J.J. De Pablo: Evidence for size-dependent mechanical properties from simulations of nanoscopic polymeric structures. J. Chem. Phys. 116, 9939 (2002).

    Article  CAS  Google Scholar 

  108. K. Yoshimoto, T.S. Jain, P.F. Nealey, and J.J. De Pablo: Local dynamic mechanical properties in model free-standing polymer thin films. J. Chem. Phys. 122, 144712 (2005).

    Article  CAS  Google Scholar 

  109. C.A. Clifford and M.P. Seah: Modelling of nanomechanical nanoindentation measurements using an AFM or nanoindenter for compliant layers on stiffer substrates. Nanotechnology 17, 5283 (2006).

    Article  CAS  Google Scholar 

  110. C.A. Clifford and M.P. Seah: Nanoindentation measurement of Young’s modulus for compliant layers on stiffer substrates including the effect of Poisson’s ratios. Nanotechnology 20, 145708 (2009).

    Article  CAS  Google Scholar 

  111. C.M. Stafford, B.D. Vogt, C. Harrison, D. Julthongpiput, and R. Huang: Elastic moduli of ultrathin amorphous polymer films. Macromolecules 39, 5095 (2006).

    Article  CAS  Google Scholar 

  112. J.M. Torres, C.M. Stafford, and B.D. Vogt: Elastic modulus of amorphous polymer thin films: relationship to the glass transition temperature. ACS Nano 3, 2677 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This publication is based on the work supported in part by the National Science Foundation (NSF), Division of Materials Research by award DMR-0906425 and award DMR-1305749. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Green.

Additional information

This author was an editor of this journal during the review and decision stage. For the MRC policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, P.F., Glynos, E. & Frieberg, B. Polymer films of nanoscale thickness: linear chain and star-shaped macromolecular architectures. MRS Communications 5, 423–434 (2015). https://doi.org/10.1557/mrc.2015.56

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.56

Navigation