Skip to main content

Advertisement

Log in

Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

More than two decades of III-N materials research has led to the production of visible spectrum commercial light-emitting diodes (LEDs) and laser diodes (LDs). Commercial c-plane LEDs are currently limited by efficiency droop which describes the decline in efficiency with increasing input current density. Laser-based sources, however, provide peak efficiencies at much higher current densities and may circumvent efficiency droop limitations. The potential benefits of non-basal plane (NBP) orientations could accelerate the evolution of solid-state lighting from LED to LD sources. Here, we review the progress in long-wavelength (440-590 nm) NBP quantum well LD research and discuss applications in solid-state lighting, visible light communication and smart lighting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. S. Nakamura: Background story of the invention of efficient blue InGaN light emitting diodes. Nobel Lecture (2014). Available at http://www.nobelprize.org/mediaplayer/index.php?id=2423

    Google Scholar 

  2. S. Nakamura, T. Mukai, and M. Senoh: Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett 64, 1687–1689 (1994).

    Article  CAS  Google Scholar 

  3. S. Nakamura, M. Senoh, N. Iwasa, and S.-I. Nagahama: High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum well structures. Jpn. J. Appl. Phys. 34, L797–L799 (1995).

    Article  CAS  Google Scholar 

  4. J.R. Lang, C.J. Neufeld, C.A. Hurni, S.C. Cruz, E. Matioli, U.K. Mishra, and J.S. Speck: High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy. Appl. Phys. Lett. 98, 131115 (2011).

    Article  CAS  Google Scholar 

  5. E. Matioli, C. Neufeld, M. Iza, S.C. Cruz, A.a Al-Heji, X. Chen, R.M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch: High internal and external quantum efficiency InGaN/GaN solar cells. Appl. Phys. Lett. 98, 021102 (2011).

    Article  CAS  Google Scholar 

  6. U. Mishra: Redefining energy efficiency. Presentation for the Institute for Energy Efficiency, UCSB (2014). Available at http://iee.ucsb.edu/files/04%20Umesh%20Mishra%20Transphorm%20-%20IEE%20Summit.pdf

    Google Scholar 

  7. Y. Taniyasu, M. Kasu, and T. Makimoto: An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325–328 (2006).

    Article  CAS  Google Scholar 

  8. K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura: 740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE. J. Cryst. Growth 343, 13–16 (2012).

    Article  CAS  Google Scholar 

  9. Y. Kawaguchi, C.Y. Huang, Y.R. Wu, Y. Zhao, S.P. DenBaars, and S. Nakamura: Semipolar (20-21) single-quantum-well red light-emitting diodes with a low forward voltage. Jpn. J. Appl. Phys. 52, 08JC08 (2013).

    Article  CAS  Google Scholar 

  10. H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan: Demonstration of an ultraviolet 336 nm AlGaN multiple-quantum-well laser diode. Appl. Phys. Lett. 93, 241106 (2008).

    Article  CAS  Google Scholar 

  11. S. Takagi, Y. Enya, T. Kyono, M. Adachi, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura, K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, M. Ikeda: High-power (over 100 mW) green laser diodes on semipolar 20-21 GaN substrates operating at wavelengths beyond 530 nm. Appl. Phys. Express 5, 082102 (2012).

    Article  CAS  Google Scholar 

  12. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, and C.A. Burrus: Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 2173–2176 (1984).

    Article  CAS  Google Scholar 

  13. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki: Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 36, L382–L385 (1997).

    Article  CAS  Google Scholar 

  14. J.W. Raring, E.M. Hall, M.C. Schmidt, C. Poblenz, B. Li, N. Pfister, D.F. Feezell, R. Craig, J.S. Speck, S.P. DenBaars, and S. Nakamura: State-of-the-art continuous-wave InGaN laser diodes in the violet, blue and green wavelength regimes. Proc. SPIE 7686, 76860L (2010).

    Article  CAS  Google Scholar 

  15. P. Waltereit, O. Brandt, M. Ramsteiner, A. Trampert, H.T. Grahn, J. Menniger, M. Reiche, R. Uecker, P. Reiche, and K.H. Ploog: Growth of m-plane GaN (1-100): a way to evade electrical polarization in nitrides. Phys. Status Solidi 180, 133–138 (2000).

    Article  CAS  Google Scholar 

  16. M.D. Craven, S.H. Lim, F. Wu, J.S. Speck, and S.P. DenBaars: Structural characterization of nonpolar (112̄0) a-plane GaN thin films grown on (11̄02) r-plane sapphire. Appl. Phys. Lett. 81, 469 (2002).

    Article  CAS  Google Scholar 

  17. C.-C. Pan, S. Tanaka, F. Wu, Y. Zhao, J.S. Speck, S. Nakamura, S.P. DenBaars, and D. Feezell: High-power, low-efficiency-droop semipolar (20-2-1) single-quantum-well blue light-emitting diodes. Appl. Phys. Express 5, 062103 (2012).

    Article  CAS  Google Scholar 

  18. K. Okamoto, J. Kashiwagi, T. Tanaka, and M. Kubota: Nonpolar m-plane InGaN multiple quantum well laser diodes with a lasing wavelength of 499.8 nm. Appl. Phys. Lett. 94, 071105 (2009).

    Article  CAS  Google Scholar 

  19. Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura: 531 nm green lasing of InGaN based laser diodes on semi-polar 20-21 free-standing GaN substrates. Appl. Phys. Express 2, 082101 (2009).

    Article  CAS  Google Scholar 

  20. M. Ueno, Y. Yoshizumi, Y. Enya, T. Kyono, M. Adachi, S. Takagi, S. Tokuyama, T. Sumitomo, K. Sumiyoshi, N. Saga, T. Ikegami, K. Katayama, and T. Nakamura: InGaN-based true green laser diodes on novel semi-polar 20-21 GaN substrates. J. Cryst. Growth 315, 258–262 (2011).

    Article  CAS  Google Scholar 

  21. Y. Yoshizumi, M. Adachi, Y. Enya, T. Kyono, S. Tokuyama, T. Sumitomo, K. Akita, T. Ikegami, M. Ueno, K. Katayama, and T. Nakamura: Continuous-wave operation of 520 nm green InGaN-based laser diodes on semi-polar 20-21 GaN substrates. Appl. Phys. Express 2, 092101 (2009).

    Article  CAS  Google Scholar 

  22. T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S. Nagahama, and T. Mukai: 510-515 nm InGaN-Based green laser diodes on c-plane GaN substrate. Appl. Phys. Express 2, 062201 (2009).

    Article  CAS  Google Scholar 

  23. S. Masui, T. Miyoshi, T. Yanamoto, and S. Nagahama: Blue and green laser diodes for large laser display. In Conf. Lasers Electro-Optics Pacific Rim. 1-2 (2013).

  24. S. Jahangir, T. Frost, A. Hazari, L. Yan, E. Stark, T. LaMountain, J.M. Millunchick, B.S. Ooi, and P. Bhattacharya: Small signal modulation characteristics of red-emitting (λ = 610 nm) III-nitride nanowire array lasers on (001) silicon. Appl. Phys. Lett. 106, 071108 (2015).

    Article  CAS  Google Scholar 

  25. T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B.S. Ooi, and P. Bhattacharya: Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. Nano Lett. 14, 4535–4541 (2014).

    Article  CAS  Google Scholar 

  26. M. Zhang, A. Banerjee, C.-S. Lee, J.M. Hinckley, and P. Bhattacharya: A InGaN/GaN quantum dot green (λ = 524 nm) laser. Appl. Phys. Express 98, 221104 (2011).

    Google Scholar 

  27. T. Frost, A. Banerjee, K. Sun, S.L. Chuang, and P. Bhattacharya: InGaN/GaN quantum dot red (630 nm) laser. IEEE J. Quantum Electron. 49, 923–931 (2013).

    Article  CAS  Google Scholar 

  28. E. Kioupakis, P. Rinke, K.T. Delaney, and C.G. Van de Walle: Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett. 98, 161107 (2011).

    Article  CAS  Google Scholar 

  29. J. Iveland, L. Martinelli, J. Peretti, J.S. Speck, and C. Weisbuch: Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 110, 177406 (2013).

    Article  CAS  Google Scholar 

  30. A. David and M.J. Grundmann: Droop in InGaN light-emitting diodes: a differential carrier lifetime analysis. Appl. Phys. Lett. 96, 103504 (2010).

    Article  CAS  Google Scholar 

  31. J.J. Wierer, J.Y. Tsao, and D.S. Sizov: Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photonics Rev. 7, 963–993 (2013).

    Article  CAS  Google Scholar 

  32. M. Funato, Y.S. Kim, Y. Ochi, A. Kaneta, Y. Kawakami, T. Miyoshi, and S. Nagahama: Optical gain spectra of a (0001) InGaN green laser diode. Appl. Phys. Express 6, 122704 (2013).

    Article  CAS  Google Scholar 

  33. J.W. Raring, M.C. Schmidt, C. Poblenz, Y.C. Chang, M.J. Mondry, B. Li, J. Iveland, B. Walters, M.R. Krames, R. Craig, P. Rudy, J.S. Speck, S.P. DenBaars, and S. Nakamura: High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates. Appl. Phys. Express 3, 112101 (2010).

    Article  CAS  Google Scholar 

  34. S. Brüninghoff, C. Eichler, S. Tautz, A. Lell, M. Sabathil, S. Lutgen, and U. Strauß: 8W single-emitter InGaN laser in pulsed operation. Phys. Status Solidi 206, 1149–1152 (2009).

    Article  CAS  Google Scholar 

  35. A. Pourhashemi, R.M. Farrell, D.A. Cohen, J.S. Speck, S.P. DenBaars, and S. Nakamura: High-power blue laser diodes with indium tin oxide cladding on semipolar (20-2-1) GaN substrates. Appl. Phys. Lett. 106, 111105 (2015).

    Article  CAS  Google Scholar 

  36. C. Vierheilig, C. Eichler, S. Tautz, A. Lell, J. Müller, F. Kopp, B. Stojetz, T. Hager, G. Brüderl, A. Avramescu, T. Lermer, J. Ristic, and U. Strauss: Beyond blue pico laser: development of high power blue and low power direct green. Proc. SPIE 8277, 82770K 1-7 (2012).

    Google Scholar 

  37. T. Melo: Analysis of gain and absorption spectra of GaN-based laser diodes. PhD dissertation, University of California, Santa Barbara (2012).

    Google Scholar 

  38. N. Michel, M. Lecomte, O. Parillaud, M. Calligaro, J. Nagle, and M. Krakowski: Optimization of the wall-plug efficiency of Al-free active region diode lasers at 975 nm. Proc. SPIE 6997, 69971W 1–8 (2008).

    Article  CAS  Google Scholar 

  39. P. Crump, W. Dong, M. Grimshaw, J. Wang, S. Patterson, D. Wise, M. DeFranza, S. Elim, S. Zhang, M. Bougher, J. Patterson, S. Das, J. Bell, J. Farmer, M. DeVito, and R. Martinsen: 100-W+ diode laser bars show >71% power conversion from 790-nm to 1000-nm and have clear route to > 85%. Proc. SPIE 6456, 64560M (2007).

    Article  CAS  Google Scholar 

  40. H.X. Li, I. Chyr, X. Jin, F. Reinhardt, T. Towe, D. Brown, T. Nguyen, M. Berube, T. Truchan, D. Hu, R. Miller, R. Srinivasan, T. Crum, E. Wolak, R. Bullock, J. Mott, and J. Harrison: >700 W continuous-wave output power from single laser diode bar. Electron. Lett. 43, 1 (2007).

    Article  Google Scholar 

  41. E. Kioupakis, P. Rinke, A. Schleife, F. Bechstedt, and C. Walle: Free-carrier absorption in nitrides from first principles. Phys. Rev. B 81, 241201 (2010).

  42. M.T. Hardy, C.O. Holder, D.F. Feezell, S. Nakamura, J.S. Speck, D.A. Cohen, and S.P. DenBaars: Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes. Appl. Phys. Lett. 103, 081103 (2013).

    Article  CAS  Google Scholar 

  43. C. Chua, Z. Yang, C. Knollenberg, M. Teepe, B. Cheng, A. Strittmatter, D. Bour, and N.M. Johnson: InAlGaN optical emitters - laser diodes with non-epitaxial cladding layers and ultraviolet light-emitting diodes. Proc. SPIE 7939, 793918 (2011).

    Article  CAS  Google Scholar 

  44. J. Nedy, N. Young, K.M. Kelchner, Y. Hu, R.M. Farrell, S. Nakamura, S.P. DenBaars, C. Weisbuch, and J.S. Speck: Low damage dry etch for III-nitride light emitters. Semicond. Sci. Technol., in press. (2015).

    Google Scholar 

  45. A.C. Abare, M. Hansen, J.S. Speck, S.P. DenBaars, and L.A. Coldren: Electrically pumped distributed feedback nitride lasers employing embedded dielectric gratings. Electron. Lett. 35, 1559–1560 (1999).

    Article  CAS  Google Scholar 

  46. D.F. Feezell, M.C. Schmidt, R.M. Farrell, K.-C. Kim, M. Saito, K. Fujito, D.A. Cohen, J.S. Speck, S.P. DenBaars, and S. Nakamura: AlGaN-cladding-free nonpolar InGaN/GaN laser diodes. Jpn. J. Appl. Phys. 46, L284–L286 (2007).

    Article  CAS  Google Scholar 

  47. Y. Kawaguchi, S.-C. Huang, R.M. Farrell, Y. Zhao, J.S. Speck, S.P. DenBaars, and S. Nakamura: Dependence of electron overflow on emission wavelength and crystallographic orientation in single-quantum-well III-nitride light-emitting diodes. Appl. Phys. Express 6, 052103 (2013).

    Article  CAS  Google Scholar 

  48. D. Sizov, R. Bhat, K. Song, D. Allen, B. Paddock, S. Coleman, L.C. Hughes, and C. Zah: 60 mW pulsed and continuous wave operation of GaN-based semipolar green laser with characteristic temperature of 190 K. Appl. Phys. Express 4, 102103 (2011).

    Article  CAS  Google Scholar 

  49. J.J. Wierer, J.Y. Tsao, and D.S. Sizov: The potential of III-nitride laser diodes for solid-state lighting. Phys. Status Solidi 11, 674–677 (2014).

    CAS  Google Scholar 

  50. Y. Zhao, R.M. Farrell, Y.-R. Wu, and J.S. Speck: Valence band states and polarized optical emission from nonpolar and semipolar III - nitride quantum well optoelectronic devices. Jpn. J. Appl. Phys. 53, 100206 (2014).

    Article  CAS  Google Scholar 

  51. K. Fujito, S. Kubo, and I. Fujimura: Development of Bulk GaN crystals and nonpolar/semipolar substrates by HVPE. MRS Bull. 34, 313–317 (2009).

    Article  CAS  Google Scholar 

  52. K. Domen, K. Horino, A. Kuramata, and T. Tanahashi: Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN. Appl. Phys. Lett. 71, 1996–1998 (1997).

    Article  CAS  Google Scholar 

  53. S.-H. Park: Crystal orientation effects on many-body optical gain of wurtzite InGaN/GaN quantum well lasers. Jpn. J. Appl. Phys. 42, L170–L172 (2003).

    Article  CAS  Google Scholar 

  54. D. Sizov, R. Bhat, J. Wang, D. Allen, B. Paddock, and C. Zah: Development of semipolar laser diode. Phys. Status Solidi 210, 459–465 (2013).

    Article  CAS  Google Scholar 

  55. A. David, M.J. Grundmann, J.F. Kaeding, N.F. Gardner, T.G. Mihopoulos, and M.R. Krames: Carrier distribution in (0001)InGaN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 92, 053502 (2008).

    Article  CAS  Google Scholar 

  56. S.E. Brinkley, Y.-D. Lin, A. Chakraborty, N. Pfaff, D. Cohen, J.S. Speck, S. Nakamura, and S.P. DenBaars: Polarized spontaneous emission from blue-green m-plane GaN-based light emitting diodes. Appl. Phys. Lett. 98, 011110 (2011).

    Article  CAS  Google Scholar 

  57. H. Yamada, K. Iso, M. Saito, H. Hirasawa, N. Fellows, H. Masui, K. Fujito, J.S. Speck, S.P. DenBaars, and S. Nakamura: Comparison of InGaN/GaN light emitting diodes grown on m-plane and a-plane bulk GaN substrates. Phys. Status Solidi 2, 89–91 (2008).

    Article  CAS  Google Scholar 

  58. T. Melo, Y.L. Hu, C. Weisbuch, M.C. Schmidt, A. David, B. Ellis, C. Poblenz, Y.-D. Lin, M. Krames, and J. Raring: Gain comparison in polar and nonpolar/semipolar gallium-nitride-based laser diodes. Semicond. Sci. Technol. 27, 024015 (2012).

    Article  CAS  Google Scholar 

  59. K.M. Kelchner, L.Y. Kuritzky, K. Fujito, S. Nakamura, S.P. DenBaars, and J.S. Speck: Emission characteristics of single InGaN quantum wells on misoriented nonpolar m-plane bulk GaN substrates. J. Cryst. Growth 382, 80–86 (2013).

    Article  CAS  Google Scholar 

  60. K.M. Kelchner, L.Y. Kuritzky, S. Nakamura, S.P. DenBaars, and J.S. Speck: Stable vicinal step orientations in m-plane GaN. J. Cryst. Growth 411, 56–62 (2015).

    Article  CAS  Google Scholar 

  61. L.Y. Kuritzky, D.J. Myers, J. Nedy, K.M. Kelchner, S. Nakamura, S.P. DenBaars, C. Weisbuch, and J.S. Speck: Electroluminescence characteristics of blue InGaN quantum wells on m-plane GaN “double miscut” substrates. Appl. Phys. Express 8, 061002 (2015).

    Article  CAS  Google Scholar 

  62. A.M. Fischer, Z. Wu, K. Sun, Q. Wei, Y. Huang, R. Senda, D. Iida, M. Iwaya, H. Amano, and F.A. Ponce: Misfit strain relaxation by stacking fault generation in InGaN quantum wells grown on m-plane GaN. Appl. Phys. Express 2, 041002 (2009).

    Article  CAS  Google Scholar 

  63. F. Wu, Y.-D. Lin, A. Chakraborty, H. Ohta, S.P. DenBaars, S. Nakamura, and J.S. Speck: Stacking fault formation in the long wavelength InGaN/GaN multiple quantum wells grown on m-plane GaN. Appl. Phys. Lett. 96, 231912 (2010).

    Article  CAS  Google Scholar 

  64. Y. Zhao, Q. Yan, C.-Y. Huang, S.-C. Huang, P.S. Hsu, S. Tanaka, C.-C. Pan, Y. Kawaguchi, K. Fujito, C.G. Van de Walle, J.S. Speck, S.P. DenBaars, S. Nakamura, and D. Feezell: Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells. Appl. Phys. Lett. 100, 201108 (2012).

    Article  CAS  Google Scholar 

  65. P.S. Hsu: Stress-relaxation in III-nitride based semipolar lasers. PhD dissertation, University of California, Santa Barbara (2013).

    Google Scholar 

  66. M.T. Hardy, E.C. Young, P. Shan Hsu, D.A. Haeger, I.L. Koslow, S. Nakamura, S.P. DenBaars, and J.S. Speck: Suppression of m-plane and c-plane slip through Si and Mg doping in partially relaxed (20-21) InGaN/GaN heterostructures. Appl. Phys. Lett. 101, 132102 (2012).

    Article  CAS  Google Scholar 

  67. K. Nishizuka, M. Funato, Y. Kawakami, S. Fujita, Y. Narukawa, and T. Mukai: Efficient radiative recombination from (11-22) -oriented InxGa1-xN multiple quantum wells fabricated by the regrowth technique. Appl. Phys. Lett. 85, 3122–3124 (2004).

    Article  CAS  Google Scholar 

  68. Y. Zhao, S. Tanaka, Q. Yan, C.Y. Huang, R.B. Chung, C.C. Pan, K. Fujito, D. Feezell, C.G. Van De Walle, J.S. Speck, S.P. Denbaars, and S. Nakamura: High optical polarization ratio from semipolar (20-2-1) blue-green InGaN/GaN light-emitting diodes. Appl. Phys. Lett. 99, 051109 (2011).

    Article  CAS  Google Scholar 

  69. L. Megalini, D.L. Becerra, R.M. Farrell, A. Pourhashemi, J.S. Speck, S. Nakamura, S.P. Denbaars, and D.A. Cohen: Continuous-wave operation of a (20-2-1) InGaN laser diode with a photoelectrochemically etched current aperture. Appl. Phys. Express 8, 042701 (2015).

    Article  CAS  Google Scholar 

  70. F. Wu, Y. Zhao, A. Romanov, S.P. DenBaars, S. Nakamura, and J.S. Speck: Stacking faults and interface roughening in semipolar (20-2-1) single InGaN quantum wells for long wavelength emission. Appl. Phys. Lett. 104, 151901 (2014).

    Article  CAS  Google Scholar 

  71. D.F. Feezell, M.C. Schmidt, S.P. DenBaars, and S. Nakamura: Development of nonpolar and semipolar InGaN/GaN visible light-emitting diodes. MRS Bull. 34, 318–323 (2009).

    Article  CAS  Google Scholar 

  72. T. Miyoshi, S. Masui, T. Okada, T. Yanamoto, T. Kozaki, S.I. Nagahama, and T. Mukai: InGaN-based 518 and 488 nm laser diodes on c-plane GaN substrate. Phys. Status Solidi 207, 1389–1392 (2010).

    Article  CAS  Google Scholar 

  73. S. Lutgen, A. Avramescu, T. Lermer, D. Queren, J. Müller, G. Bruederl, and U. Strauss: True green InGaN laser diodes. Phys. Status Solidi 207, 1318–1322 (2010).

    Article  CAS  Google Scholar 

  74. A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, and U. Strauss: True green laser diodes at 524 nm with 50 mW continuous wave output power on c-plane GaN. Appl. Phys. Express 3, 061003 (2010).

    Article  CAS  Google Scholar 

  75. J.W. Raring, E.M. Hall, M.C. Schmidt, C. Poblenz, B. Li, N. Pfister, D.F. Feezell, R. Craig, J.S. Speck, S.P. DenBaars, and S. Nakamura: High-power high-efficiency continuous-wave InGaN laser diodes in the violet, blue, and green wavelength regimes. Proc. SPIE 7602, 760218 (2010).

    Article  CAS  Google Scholar 

  76. M. Adachi, Y. Yoshizumi, Y. Enya, T. Kyono, T. Sumitomo, S. Tokuyama, S. Takagi, K. Sumiyoshi, N. Saga, T. Ikegami, M. Ueno, K. Katayama, and T. Nakamura: Low threshold current density InGaN based 520-530 nm green laser diodes on semi-polar 20-21 free-standing GaN substrates. Appl. Phys. Express 3, 121001 (2010).

    Article  CAS  Google Scholar 

  77. K. Yanashima, H. Nakajima, K. Tasai, K. Naganuma, N. Fuutagawa, Y. Takiguchi, T. Hamaguchi, M. Ikeda, Y. Enya, S. Takagi, M. Adachi, T. Kyono, Y. Yoshizumi, T. Sumitomo, Y. Yamanaka, T. Kumano, S. Tokuyama, K. Sumiyoshi, N. Saga, M. Ueno, K. Katayama, T. Ikegami, T. Nakamura: Long-lifetime true green laser diodes with output power over 50 mW above 525 nm grown on semipolar 20-21 GaN substrates. Appl. Phys. Express 5, 082103 (2012).

    Article  CAS  Google Scholar 

  78. A. Avramescu, T. Lermer, J. Müller, S. Tautz, D. Queren, S. Lutgen, and U. Strauss: InGaN laser diodes with 50 mW output power emitting at 515 nm. Appl. Phys. Lett. 95, 071103 (2009).

    Article  CAS  Google Scholar 

  79. A. Tyagi, M.R. Farrell, K.M. Kelchner, C.Y. Huang, P.S. Hsu, D.A. Haeger, M.T. Hardy, C. Holder, K. Fujito, D.A. Cohen, H. Ohta, J.S. Speck, S.P. DenBaars, and S. Nakamura: AlGaN-cladding free green semipolar GaN based laser diode with a lasing wavelength of 506.4 nm. Appl. Phys. Express 3, 011002 (2010).

    Article  CAS  Google Scholar 

  80. Y.-D. Lin, S. Yamamoto, C.Y. Huang, C.L. Hsiung, F. Wu, K. Fujito, H. Ohta, J.S. Speck, S.P. Denbaars, and S. Nakamura: High quality InGaN/AlGaN multiple quantum wells for semipolar InGaN green laser diodes. Appl. Phys. Express 3, 082001 (2010).

    Article  CAS  Google Scholar 

  81. M.T. Hardy, F. Wu, P. Shan Hsu, D.A. Haeger, S. Nakamura, J.S. Speck, and S.P. DenBaars: True green semipolar InGaN-based laser diodes beyond critical thickness limits using limited area epitaxy. J. Appl. Phys. 114, 183101 (2013).

    Article  CAS  Google Scholar 

  82. S. Masui, T. Miyoshi, T. Yanamoto, and S. Nagahama: 1 W AlInGaN based green laser diodes. In Conf. Lasers Electro-Optics Pacific Rim, 2013; pp. 1-2.

    Google Scholar 

  83. Y. Zhao, Q. Yan, D. Feezell, K. Fujito, C.G. Van De Walle, J.S. Speck, S.P. Denbaars, and S. Nakamura: Optical polarization characteristics of semipolar (30-31) and (30-3-1) InGaN/GaN light-emitting diodes. Opt. Express 21, A53–A59 (2013).

    Article  CAS  Google Scholar 

  84. P.S. Hsu, E.C. Young, A.E. Romanov, K. Fujito, S.P. DenBaars, S. Nakamura, and J.S. Speck: Misfit dislocation formation via pre-existing threading dislocation glide in (11-22) semipolar heteroepitaxy. Appl. Phys. Lett. 99, 081912 (2011).

    Article  CAS  Google Scholar 

  85. P.S. Hsu, M.T. Hardy, E.C. Young, A.E. Romanov, S.P. DenBaars, S. Nakamura, and J.S. Speck: Stress relaxation and critical thickness for misfit dislocation formation in (10-10) and (30-3-1) InGaN/GaN heteroepitaxy. Appl. Phys. Lett. 100, 171917 (2012).

    Article  CAS  Google Scholar 

  86. F. Wu, E.C. Young, I. Koslow, M.T. Hardy, P.S. Hsu, A.E. Romanov, S. Nakamura, S.P. DenBaars, and J.S. Speck: Observation of non-basal slip in semipolar InxGa1-xN/GaN heterostructures. Appl. Phys. Lett. 99, 251909 (2011).

    Article  CAS  Google Scholar 

  87. P.S. Hsu, M.T. Hardy, F. Wu, I. Koslow, E.C. Young, A.E. Romanov, K. Fujito, D.F. Feezell, S.P. DenBaars, J.S. Speck, and S. Nakamura: 444.9 nm semipolar (11-22) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer. Appl. Phys. Lett. 100, 021104 (2012).

    Article  CAS  Google Scholar 

  88. M.T. Hardy, S. Nakamura, J.S. Speck, and S.P. DenBaars: Suppression of relaxation in (20-21) InGaN/GaN laser diodes using limited area epitaxy. Appl. Phys. Lett. 101, 241112 (2012).

    Article  CAS  Google Scholar 

  89. P.S. Hsu, F. Wu, E.C. Young, A.E. Romanov, K. Fujito, S.P. DenBaars, J.S. Speck, and S. Nakamura: Blue and aquamarine stress-relaxed semipolar (11-22) laser diodes. Appl. Phys. Lett. 103, 161117 (2013).

    Article  CAS  Google Scholar 

  90. J.E. Short: How much media? 2013 Report on American consumers, 2013.

    Google Scholar 

  91. J. Grubor, S. Randel, K.-D. Langer, and J.W. Walewski: Broadband information broadcasting using LED-based interior lighting. J. Lightw. Technol. 26, 3883–3892 (2008).

    Article  Google Scholar 

  92. J.J.D. Mckendry, D. Massoubre, S. Zhang, B.R. Rae, R.P. Green, E. Gu, R.K. Henderson, A.E. Kelly, and M.D. Dawson: Visible-light communications using a CMOS-controlled micro-light emitting-diode array. J. Lightw. Technol. 30, 61–67 (2012).

    Article  CAS  Google Scholar 

  93. D. Tsonev, H. Chun, S. Rajbhandari, J.J.D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A.E. Kelly, G. Faulkner, M.D. Dawson, H. Haas, and D. O’Brien: A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED. IEEE Photonics Technol. Lett. 26, 637–640 (2014).

    Article  Google Scholar 

  94. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku: Optical gain and carrier lifetime of InGaN multiquantum well structure laser diodes. Appl. Phys. Lett. 69, 1568 (1996).

    Article  CAS  Google Scholar 

  95. S. Watson, M. Tan, S.P. Najda, P. Perlin, M. Leszczynski, G. Targowski, S. Grzanka, and A. Kelly: Visible light communications using a directly modulated 422 nm GaN laser diode. Opt. Lett. 38, 3792–3794 (2013).

    Article  CAS  Google Scholar 

  96. C. Lee, C. Zhang, M. Cantore, R.M. Farrell, S. Oh, T. Margalith, J.S. Speck, S. Nakamura, J.E. Bowers, and S.P. DenBaars: 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Opt. Express 23, 16232–16237 (2015).

    Article  CAS  Google Scholar 

  97. L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K.-D. Langer: High-speed visible light communication systems. IEEE Commun. Mag., December, 60–66 (2013).

    Google Scholar 

  98. A. Neumann, J.J. Wierer, W. Davis, Y. Ohno, S.R.J. Brueck, and J.Y. Tsao: Four-color laser white illuminant demonstrating high color-rendering quality. Opt. Express 19, A982–A990 (2011).

    Article  Google Scholar 

  99. E.F. Schubert and J.K. Kim: Solid-state light sources getting smart. Science 308, 1274–1279 (2005).

    Article  CAS  Google Scholar 

  100. D.M. Berson, F.A. Dunn, and M. Takao: Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).

    Article  CAS  Google Scholar 

  101. S. Hattar, H.W. Liao, M. Takao, D.M. Berson, and K.W. Yau: Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).

    Article  CAS  Google Scholar 

  102. G.C. Brainard, D. Sliney, J.P. Hanifin, G. Glickman, B. Byrne, J.M. Greeson, S. Jasser, E. Gerner, and M.D. Rollag: Sensitivity of the human circadian system to short wavelength (420 nm) light. J. Biol. Rhythms 23, 379–386 (2008).

    Article  Google Scholar 

  103. A.M. Vosko, C.S. Colwell, and A.Y. Avidan: Jet lag syndrome: Circadian organization, pathophysiology, and management strategies. Nat. Sci. Sleep 2, 187–198 (2010).

    Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the Solid State Lighting and Energy Electronics Center at UCSB. We thank Joseph Nedy for his careful reading of this manuscript and his helpful comments. L. K. acknowledges an NSF Graduate Research Fellowship under Grant No. DGE-1144085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah Y. Kuritzky.

Additional information

This author was a member of the Advisory Board of this journal during the review and decision stage. Advisory Board members do not sit on the editorial board, and so fall under the “Non-Editors” section of the Materials Research Society policy on review and publication of manuscripts to be found at http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuritzky, L.Y., Speck, J.S. Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN. MRS Communications 5, 463–473 (2015). https://doi.org/10.1557/mrc.2015.53

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.53

Navigation