Skip to main content
Log in

Screen-printed organic electrochemical transistors for metabolite sensing

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Screen-printed organic electrochemical transistors (OECTs) were tested as glucose and lactate sensors. The intrinsic amplification of the device allowed it to detect metabolites in low molecular range and validation tests were made on real human sweat. The development of an organically modified sol-gel solid electrolyte paves the way for all printed OECT-based biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Table I
Figure 4

Similar content being viewed by others

References

  1. B. Phypers: Lactate physiology in health and disease. Contin. Educ. Anaesth. Crit. Care Pain 6, 128–132 (2006).

    Article  Google Scholar 

  2. R. Maidan, and A. Heller: Elimination of electrooxidizable interferant-produced currents in amperometric biosensors. Anal. Chem. 64, 2889–2896 (1992).

    Article  CAS  Google Scholar 

  3. J. Kim, G. Valdes-Ramirez, A.J. Bandodkar, W. Jia, A.G. Martinez, J. Ramirez, P. Mercier, and J. Wang: Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139, 1632–1636 (2014).

    Article  CAS  Google Scholar 

  4. H. Yao, A.J. Shum, M. Cowan, I. Lahdesmaki, and B.A. Parviz: A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 26, 3290–3296 (2011).

    Article  CAS  Google Scholar 

  5. N. Thomas, I. Lähdesmäki, and B.A. Parviz: A contact lens with an integrated lactate sensor. Sens. Actuators B 162, 128–134 (2012).

    Article  CAS  Google Scholar 

  6. D. Khodagholy, V.F. Curto, K.J. Fraser, M. Gurfinkel, R. Byrne, D. Diamond, G.G. Malliaras, F. Benito-Lopez, and R.M. Owens: Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J. Mater. Chem. 22, 4440–4443 (2012).

    Article  CAS  Google Scholar 

  7. W. Jia, A.J. Bandodkar, G. Valdes-Ramirez, J.R. Windmiller, Z. Yang, J. Ramirez, G. Chan, and J. Wang: Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85, 6553–6560 (2013).

    Article  CAS  Google Scholar 

  8. H.S.K. White, and G.P. Wrighton: Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Soc. 106, 5375–5377 (1984).

    Article  CAS  Google Scholar 

  9. X. Strakosas, M. Bongo, and R.M. Owens: The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 41735, 1–14 (2015).

    Google Scholar 

  10. D.A. Bernards, D.J. Macaya, M. Nikolou, J.A. DeFranco, S. Takamatsu, and G.G. Malliaras: Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 18, 116–120 (2008).

    Article  CAS  Google Scholar 

  11. N.Y. Shim, D.A. Bernards, D.J. Macaya, J.A. Defranco, M. Nikolou, R.M. Owens, and G.G. Malliaras: All-plastic electrochemical transistor for glucose sensing using a ferrocene mediator. Sensors (Basel) 9, 9896–9902 (2009).

    Article  CAS  Google Scholar 

  12. S.Y. Yang, J.A. Defranco, Y.A. Sylvester, T.J. Gobert, D.J. Macaya, R.M. Owens, and G.G. Malliaras: Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. Lab Chip 9, 704–708 (2009).

    Article  CAS  Google Scholar 

  13. H. Tang, F. Yan, P. Lin, J. Xu, and H.L.W. Chan: Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv. Func. Mater. 21, 2264–2272 (2011).

    Article  Google Scholar 

  14. A. Elschner, S. Kirchmeyer, W. Lövenich, U. Merker, and K. Reuter: PEDOT, Principles and Applications of an Intrinsically Conductive Polymer (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2011), pp. 113, 158.

    Google Scholar 

  15. R.M. Owens, and G.G. Malliaras: Organic electronics at the interface with biology. MRS Bull. 35, 449–456 (2010).

    Article  CAS  Google Scholar 

  16. D. Khodagholy, J. Rivnay, M. Sessolo, M. Gurfinkel, P. Leleux, L.H. Jimison, E. Stavrinidou, T. Herve, S. Sanaur, R.M. Owens, and G.G. Malliaras: High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133(1-6) (2013).

    Article  Google Scholar 

  17. J. Rivnay, P. Leleux, M. Sessolo, D. Khodagholy, T. Herve, M. Fiocchi, and G.G. Malliaras: Organic electrochemical transistors with maximum transconductance at zero gate bias. Adv. Mater. 25, 7010–7014 (2013).

    Article  CAS  Google Scholar 

  18. L. Basiricò, P. Cosseddu, A. Scidà, B. Fraboni, G.G. Malliaras, and A. Bonfiglio: Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors. Org. Electron. 13, 244–248 (2012).

    Article  Google Scholar 

  19. N. Kaihovirta, T. Mäkelä, X. He, C.-J. Wikman, C.-E. Wilén, and R. Österbacka: Printed all-polymer electrochemical transistors on patterned ion conducting membranes. Org. Electron. 11, 1207–1211 (2010).

    Article  CAS  Google Scholar 

  20. P. Andersson Ersman, D. Nilsson, J. Kawahara, G. Gustafsson, and M. Berggren: Fast-switching all-printed organic electrochemical transistors. Org. Electron. 14, 1276–1280 (2013).

    Article  CAS  Google Scholar 

  21. T.K. David Nilsson, P.-O. Svensson, and M. Berggren: An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper. Sens. Actuators B - Chem. 86, 193–197 (2002).

    Article  Google Scholar 

  22. S.Y. Yang, F. Cicoira, R. Byrne, F. Benito-Lopez, D. Diamond, R.M. Owens, and G.G. Malliaras: Electrochemical transistors with ionic liquids for enzymatic sensing. Chem. Commun. (Camb.). 46, 7972–7974 (2010).

    Article  CAS  Google Scholar 

  23. S.N. Tan, and Y. Miao: Amperometric hydrogen peroxide biosensor with silica sol-gel/chitosan film as immobilization matrix. Anal. Chim. Acta 437, 87–93 (2001).

    Article  Google Scholar 

  24. J. Xu, X. Chen, and S. Dong: Organically modified sol-gel/chitosan composite based glucose biosensor. Electroanalysis 15, 608–612 (2003).

    Article  Google Scholar 

  25. W. Yang, H. Zhou, and C. Sun: Synthesis of ferrocene-branched chitosan derivatives: redox polysaccharides and their application to reagentless enzyme-based biosensors. Macromol. Rapid Commun. 28, 265–270 (2007).

    Article  CAS  Google Scholar 

  26. D.A. Bernards and G.G. Malliaras: Steady-state and transient behavior of organic electrochemical transistors. Adv. Func. Mater. 17, 3538–3544 (2007).

    Article  CAS  Google Scholar 

  27. C.J. Harvey, R.F. LeBouf, and A.B. Stefaniak: Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol. In Vitro 24, 1790–1796 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Laurent Tournon for his help in designing the layout of the OECTs. This work was partially supported by Labex ARCANE (grant number ANR-11-LABX-0003-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roísín M. Owens, Pascal Mailley or George G. Malliaras.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.52

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheiblin, G., Aliane, A., Strakosas, X. et al. Screen-printed organic electrochemical transistors for metabolite sensing. MRS Communications 5, 507–511 (2015). https://doi.org/10.1557/mrc.2015.52

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.52

Navigation