Skip to main content
Log in

Functional semiconductors targeting copolymer architectures and hybrid nanostructures

  • Polymers/Soft Matter Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The introduction of functional units onto semiconducting polymers either as side chains oratthe α-and ω-ends of polymeric chains isthe method of choice in order to impose additional functions to the final semiconducting materials when aiming specific applications. Moreover, the functionalization approach provides a route to further complex mac romoleculararchitecturesas well as the generation of hybrid materials through the covalent attachment of the semiconductor to carbon nanostructures orto inorganic nanoparticles. Via this prospective an outline overfunctionalized and hybrid semiconducting polymers is provided along with possible paths of future research toward functional and hybrid semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Figure 2
Scheme 16
Figure 3
Scheme 17
Scheme 18
Scheme 19
Figure 4
Figure 5
Scheme 20
Figure 6
Scheme 21
Scheme 22

Similar content being viewed by others

References

  1. A.J. Heeger: Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew. Chem., Int. Ed. 40, 2591–2611 (2001).

    Article  CAS  Google Scholar 

  2. J.E. Carle, M. Helgesen, M.V. Madsen, E. Bundgaard, and F.C. Krebs: Upscaling from single cells to modules-fabrication of vacuum- and ITO-free polymer solar cells on flexible substrates with long lifetime. J. Mater. Chem. C 2, 1290–1297 (2014).

    Article  CAS  Google Scholar 

  3. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao: Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591–595 (2012).

    Article  CAS  Google Scholar 

  4. P.-L.T. Boudreault, A. Najari, and M. Leclerc: Processable low-bandgap polymers for photovoltaic applications. Chem. Mater. 23, 456–469 (2011).

    Article  CAS  Google Scholar 

  5. S.Y. Hong, M. Kertesz, Y.S. Lee, and O.K. Kim: Geometrical and electronic structures of a benzimidazobenzophenanthroline-type ladder polymer (BBL). Macromolecules 25, 5424–5429 (1992).

    Article  CAS  Google Scholar 

  6. A. Babel and S.A. Jenekhe: High electron mobility in ladder polymer field-effect transistors. J. Am. Chem. Soc. 125, 13656–13657 (2003).

    Article  CAS  Google Scholar 

  7. M.M. Alam and S.A. Jenekhe: Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers. Chem. Mater. 16, 4647–4656 (2004).

    Article  CAS  Google Scholar 

  8. M. Jeffries-EL and R.D. McCullough: ‘Regioregular Polythiophenes’, Chapter 9 in T.A. Skotheim and J. Reynolds (eds), Handbook of Conducting Polymers, 3rd ed. (CRC Press, LLC, Boca Raton, FL, 2007), pp. 1–49.

    Google Scholar 

  9. I.F. Perepichka and D.F. Perepichka (eds): Handbook of Thiophene Based Materials: Applications in Organic Electronics and Photonics, Volume One: Synthesis and Theory (John Wiley & Sons, Chichester, 2009).

    Google Scholar 

  10. R.D. McCullough: The chemistry of conducting polythiophenes. Adv. Mater. 10, 93–116 (1998).

    Article  CAS  Google Scholar 

  11. R.S. Loewe, P.C. Ewbank, J. Liu, L. Zhai, and R.D. McCullough: Regioregular, head-to-tail coupled poly(3-alkylthiophenes) made easy by the grim method: investigation of the reaction and the origin of regioselectivity. Macromolecules 34, 4324–4333 (2001).

    Article  CAS  Google Scholar 

  12. R. Miyakoshi, A. Yokoyama, and T. Yokozawa: Catalyst-transfer polycondensation. Mechanism of Ni-catalyzed chain-growth polymerization leading to well-defined poly(3-hexylthiophene). J. Am. Chem. Soc. 127, 17542–17547 (2005).

    Article  CAS  Google Scholar 

  13. T. Beryozkina, V. Senkovskyy, E. Kaul, and A. Kiriy: Kumada catalyst-transfer polycondensation of thiophene-based oligomers: robustness of a chain-growth mechanism. Macromolecules 41, 7817–7823 (2008).

    Article  CAS  Google Scholar 

  14. V. Senkovskyy, M. Sommer, R. Tkachov, H. Komber, W.T.S. Huck, and A. Kiriy: Convenient route to initiate kumada catalyst-transfer polycondensation using Ni(dppe)Cl2 or Ni(dppp)Cl2 and sterically hindered grignard compounds. Macromolecules 43, 10157–10161 (2010).

    Article  CAS  Google Scholar 

  15. A. Kiriy, V. Senkovskyy, and M. Sommer: Kumada catalyst-transfer polycondensation: mechanism, opportunities, and challenges. Macromol. Rapid Commun. 32, 1503–1517 (2011).

    Article  CAS  Google Scholar 

  16. J.S. Liu and R.D. McCullough: End group modification of regioregular polythiophene through postpolymerization functionalization. Macromolecules 35, 9882–9889 (2002).

    Article  CAS  Google Scholar 

  17. Y. Li, G. Vamvounis, J. Yu, and S. Holdcroft: A novel and versatile methodology for functionalization of conjugated polymers. Transformation of poly(3-bromo-4-hexylthiophene) via palladium-catalyzed coupling chemistry. Macromolecules 34, 3130–3132 (2001).

    Article  CAS  Google Scholar 

  18. M.C. Stefan, M.P. Bhatt, P. Sista, and H.D. Magurudeniya: Grignard metathesis (GRIM) polymerization for the synthesis of conjugated block copolymers containing regioregular poly(3-hexylthiophene). Polym. Chem. 3, 1693–1701 (2012).

    Article  CAS  Google Scholar 

  19. S.P. Economopoulos, C.L. Chochos, V.G. Gregoriou, J.K. Kallitsis, S. Barrau, and G. Hadziioannou: Novel brush-type copolymers bearing thiophene backbone and side chain quinoline blocks. Synthesis and their use as a compatibilizer in thiophene-quinoline polymer blends. Macromolecules 40, 921–927 (2007).

    Article  CAS  Google Scholar 

  20. B. Gholamkhass and S. Holdcroft: Toward stabilization of domains in polymer bulk heterojunction films. Chem. Mater. 22, 5371–5376 (2010).

    Article  CAS  Google Scholar 

  21. F. Goubard and G. Wantz: Ternary blends for polymer bulk heterojunction solar cells. Polym. Int. 63, 1362–1367 (2014).

    Article  CAS  Google Scholar 

  22. M.T. Dang, L. Hirsch, G. Wantz, and J.D. Wuest: Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the Benchmark poly(3-hexylthiophene):[6,6]-Phenyl-C61-butyric acid methyl ester system. Chem. Rev. 113, 3734–3765 (2013).

    Article  CAS  Google Scholar 

  23. K. Yuan, L. Chen, and Y. Chen: Nanostructuring compatibilizers of block copolymers for organic photovoltaics. Polym. Int. 63, 593–606 (2014).

    Article  CAS  Google Scholar 

  24. P.D. Topham, A.J. Parnell, and R.C. Hiorns: Block copolymer strategies for solar cell technology. J. Polym. Sci. B: Polym. Phys. 49, 1131–1156 (2011).

    Article  CAS  Google Scholar 

  25. G. Wantz, L. Derue, O. Dautel, A. Rivaton, P. Hudhomme, and C. Dagron-Lartigau: Stabilizing polymer-based bulk heterojunction solar cells via crosslinking. Polym. Int. 63, 1346–1361 (2014).

    Article  CAS  Google Scholar 

  26. B.J. Kim, Y. Miyamoto, B. Ma, and J.M.J. Frechet: Photocrosslinkable polythiophenes for efficient, thermally stable, organic photovoltaics. Adv. Funct. Mater. 19, 2273–2281 (2009).

    Article  CAS  Google Scholar 

  27. H.J. Kim, A-R. Han, C.-H. Cho, H. Kang, H.-H. Cho, M.Y. Lee, J.M.J. Fréchet, J.H. Oh, and B.J. Kim: Solvent-resistant organic transistors and thermally stable organic photovoltaics based on cross-linkable conjugated polymers. Chem. Mater. 24, 215–221 (2012).

    Article  CAS  Google Scholar 

  28. S. Khiev, L. Derue, G. Ayenew, H. Medlej, R. Brown, L. Rubatat, R.C. Hiorns, G. Wantz, and C. Dagron-Lartigau: enhanced thermal stability of organic solar cells by using photolinkable end-capped polythiophenes. Polym. Chem. 4, 4145–4150 (2013).

    Article  CAS  Google Scholar 

  29. M. Jeffries-El, G. Sauve, and R.D. McCullough: Facile synthesis of end-functionalized regioregular poly(3-alkylthiophene)s via modified grignard metathesis reaction. Macromolecules 38, 10346–10352 (2005).

    Article  CAS  Google Scholar 

  30. A. Yassara, L. Miozzoa, R. Girondaa, and G. Horowitz: Rod-coil and all-conjugated block copolymers for photovoltaic applications. Prog. Polym. Sci. 38, 791–844 (2013).

    Article  CAS  Google Scholar 

  31. M. Urien, H. Erothu, E. Cloutet, R.C. Hiorns, L. Vignau, and H. Cramail: Poly(3-hexylthiophene) based block copolymers prepared by “click” chemistry. Macromolecules 41, 7033–7040 (2008).

    Article  CAS  Google Scholar 

  32. Y. Tao, B. McCulloch, S. Kim, and R.A. Segalman: The relationship between morphology and performance of donor-acceptor rod-coil block copolymer solar cells. Soft Matter 5, 4219–4230 (2009).

    Article  CAS  Google Scholar 

  33. C.R. Craley, R. Zhang, T. Kowalewski, R.D. McCullough, and M.C. Stefan: Regioregular poly(3-hexylthiophene) in a novel conducting amphiphilic block copolymer. Macromol. Rapid Commun. 30, 11–16 (2009).

    Article  CAS  Google Scholar 

  34. S.-J. Mougnier, C. Brochon, E. Cloutet, G. Fleury, H. Cramail, and G. Hadziioannou: Design of well-defi ned monofunctionalized poly(3-hexylthiophene)s: toward the synthesis of semiconducting graft copolymers. Macromol. Rapid Commun. 33, 703–709 (2012).

    Article  CAS  Google Scholar 

  35. Z. Li, R.J. Ono, Z.-Q. Wu, and C.W. Bielawski: Synthesis and self-assembly of poly(3-hexylthiophene)-block-poly(acrylic acid). Chem. Commun. 47, 197–199 (2011).

    Article  Google Scholar 

  36. H. Erothu, J. Kolomanska, P. Johnston, S. Schumann, D. Deribew, D.T.W. Toolan, A. Gregori, C. Dagron-Lartigau, G. Portale, W. Bras, T. Arnold, A. Distler, R.C. Hiorns, P. Mokarian-Tabari, T.W. Collins, J.R. Howse, and P.D. Topham: Synthesis, thermal processing, and thin film morphology of poly(3-hexylthiophene)-poly(styrenesulfonate) block copolymers. Macromolecules 48, 2107–2117 (2015).

    Article  CAS  Google Scholar 

  37. R.H. Lohwasser and M. Thelakkat: Synthesis of amphiphilic rod-coil P3HT-b-P4VP carrying a long conjugated block using NMRP and click chemistry. Macromolecules 45, 3070–3077 (2012).

    Article  CAS  Google Scholar 

  38. H. Erothu, A.A. Sohdi, A.C. Kumar, A.J. Sutherland, C. Dagron-Lartigau, A. Allal, R.C. Hiorns, and P.D. Topham: Facile synthesis of poly(3-hexylthiophene)-blockpoly(ethylene oxide) copolymers via Steglich esterification. Polym. Chem. 4, 3652–3655 (2013).

    Article  CAS  Google Scholar 

  39. M. Jeffries-El, G. Sauvé, and R.D. McCullough: In-situ end-group functionalization of regioregular poly(3-alkylthiophene) using the grignard metathesis polymerization method. Adv. Mater. 16, 1017–1019 (2004).

    Article  CAS  Google Scholar 

  40. S. Kakogianni, S.N. Kourkouli, A.K. Andreopoulou, and J.K. Kallitsis: A versatile approach for creating hybrid semiconducting polymer-fullerene architectures for organic electronics. J. Mater. Chem. A 2, 8110–8117 (2014).

    Article  CAS  Google Scholar 

  41. J. Chen and Y. Cao: Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc. Chem. Res. 42, 1709–1718 (2009).

    Article  CAS  Google Scholar 

  42. Y.J. Cheng, S.H. Yang, and C.S. Hsu: Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009).

    Article  CAS  Google Scholar 

  43. M.-H. Yoon, C. Kim, A. Facchetti, and T.J. Marks: Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J. Am. Chem. Soc. 128, 12851–12869 (2006).

    Article  CAS  Google Scholar 

  44. D.J. Crouch, P.J. Skabara, J.E. Lohr, J.J.W. McDouall, M. Heeney, I. McCulloch, D. Sparrowe, M. Shkunov, S.J. Coles, P.N. Horton, and M.B. Hursthouse: Thiophene and selenophene copolymers incorporating fluorinated phenylene units in the main chain: synthesis, characterization, and application in organic field-effect transistors. Chem. Mater. 17, 6567–6578 (2005).

    Article  CAS  Google Scholar 

  45. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu: For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010).

    Article  CAS  Google Scholar 

  46. P. Sonar, J. Chang, Z. Shi, J. Wu, and J. Li: Thiophene-tetrafluorophenyl-thiophene: a promising building block for ambipolar organic field effect transistors. J. Mater. Chem. C 3, 2080–2085 (2015).

    Article  CAS  Google Scholar 

  47. J.M. Lobez, T.L. Andrew, V. Buloviand, and T.M. Swager: Improving the performance of P3HT-fullerene solar cells with side-chain-functionalized poly(thiophene) additives: a new paradigm for polymer design. ACS Nano 6, 3044–3056 (2012).

    Article  CAS  Google Scholar 

  48. P. Giannopoulos, A. Nikolakopoulou, A.K. Andreopoulou, L. Sygellou, J.K. Kallitsis, and P. Lianos: An alternative methodology for anchoring organic sensitizers onto TiO2 semiconductors for photoelectrochemical applications. J. Mater. Chem. A 2, 20748–20759 (2014).

    Article  CAS  Google Scholar 

  49. P. Giannopoulos, C. Anastasopoulos, A.K. Andreopoulou, and J.K. Kallitsis: Low-band gap electron-donor oligomeric sensitizers directly connected onto TiO2 nanoparticles for dye sensitized solar cells applications. J. Surf. Interface Mater. 2, 274–279 (2014).

    Article  Google Scholar 

  50. J. Liu, T. Tanaka, K. Sivula, A.P. Alivisatos, and J.M.J. Frechet: Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J. Am. Chem. Soc. 126, 6550–6551 (2004).

    Article  CAS  Google Scholar 

  51. T. Rath and G. Trimme: In situ syntheses of semiconducting nanoparticles in conjugated polymer matrices and their application in photovoltaics. Hybrid Mater. 1, 15–36 (2013).

    Google Scholar 

  52. J.N. Freitas, A.S. Gonçalves, and A.F. Nogueiras: A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells. Nanoscale 6, 6371–6397 (2014).

    Article  CAS  Google Scholar 

  53. Z.-S. Guo, L. Zhao, J. Pei, Z.-L. Zhou, G. Gibson, J. Brug, S. Lam, and S.S. Mao: CdSe/ZnS nanoparticle composites with amine-functionalized polyfluorene derivatives for polymeric light-emitting diodes: synthesis, photophysical properties, and the electroluminescent performance. Macromolecules 43, 1860–1866 (2010).

    Article  CAS  Google Scholar 

  54. H. Skaff, K. Sill, and T. Emrick: Quantum dots tailored with poly(para-phenylene vinylene). J. Am. Chem. Soc. 126, 11322–11325 (2004).

    Article  CAS  Google Scholar 

  55. T. de Roo, J. Haase, J. Keller, C. Hinz, M. Schmid, D.V. Seletskiy, H. Cölfen, A. Leitenstorfer, and S. Mecking: A direct approach to organic/inorganic semiconductor hybrid particles via functionalized polyfluorene ligands. Adv. Funct. Mater. 24, 2714–2719 (2014).

    Article  CAS  Google Scholar 

  56. F. Monnaie, W. Brullot, T. Verbiest, J. De Winter, P. Gerbaux, A. Smeets, and G. Koeckelberghs: Synthesis of end-group functionalized P3HT: general protocol for P3HT/nanoparticle hybrids. Macromolecules 46, 8500–8508 (2013).

    Article  CAS  Google Scholar 

  57. A. Bousqueta, H. Awada, R.C. Hiorns, C. Dagron-Lartigau, and L. Billona: Conjugated-polymer grafting on inorganic and organicsubstrates: a new trend in organic electronic materials. Prog. Polym. Sci. 39, 1847–1877 (2014).

    Article  CAS  Google Scholar 

  58. L. Martinez, S. Higuchi, A.J. MacLachlan, A. Stavrinadis, N.C. Miller, S.L. Diedenhofen, M. Bernechea, S. Sweetnam, J. Nelson, S.A. Haque, K. Tajimaef, and G. Konstantatos: Improved electronic coupling in hybrid organic-inorganic nanocomposites employing thiol-functionalized P3HT and bismuth sulfide nanocrystals. Nanoscale 6, 10018–10026 (2014).

    Article  CAS  Google Scholar 

  59. S.M. Lindner and M. Thelakkat: Nanostructures of n-type organic semiconductor in a p-type matrix via self-assembly of block copolymers. Macromolecules 37, 8832–8835 (2004).

    Article  CAS  Google Scholar 

  60. S.M. Lindner, S. Huttner, A. Chiche, M. Thelakkat, and G. Krausch: Charge separation at self-assembled nanostructured bulk interface in block copolymers. Angew. Chem., Int. Ed. 45, 3364–3368 (2006).

    Article  CAS  Google Scholar 

  61. M. Sommer, S.M. Lindner, and M. Thelakkat: Microphase-separated donor-acceptor diblock copolymers: influence of homo energy levels and morphology on polymer solar cells. Adv. Funct. Mater. 17, 1493–1500 (2007).

    Article  CAS  Google Scholar 

  62. M. Sommer, A.S. Lang, and M. Thelakkat: Crystalline-crystalline donor-acceptor block copolymers. Angew. Chem., Int. Ed. 47, 7901–7904 (2008).

    Article  CAS  Google Scholar 

  63. Q.L. Zhang, A. Cirpan, T.P. Russell, and T. Emrick: Donor-acceptor poly(thiophene-block-perylene diimide) copolymers: synthesis and solar cell fabrication. Macromolecules 42, 1079–1082 (2009).

    Article  CAS  Google Scholar 

  64. S. Rajaram, P.B. Armstrong, B.J. Kim, and J.M.J. Frechet: Effect of addition of a diblock copolymer on blend morphology and performance of poly(3-hexylthiophene):perylene diimide solar cells. Chem. Mater. 21, 1775–1777 (2009).

    Article  CAS  Google Scholar 

  65. P. Mansky, Y. Liu, E. Huang, T.P. Russell, and C. Hawker: Controlling polymer-surface interactions with random copolymer brushes. Science 275, 1458–1460 (1997).

    Article  CAS  Google Scholar 

  66. B. Zhao and W. Brittain: Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 25, 677–710 (2000).

    Article  CAS  Google Scholar 

  67. S. Campidelli, C. Sooambar, E.L. Diz, C. Ehli, D.M. Guldi, and M. Prato: Dendrimer-functionalized single-wall carbon nanotubes: synthesis, characterization, and photoinduced electron transfer. J. Am. Chem. Soc. 128, 12544–12552 (2006).

    Article  CAS  Google Scholar 

  68. C. Cioffi, S. Campidelli, C. Sooambar, M. Marcaccio, G. Marcolongo, M. Meneghetti, D. Paolucci, F. Paolucci, C. Ehli, G.M.A. Rahman, V. Sgobba, D.M. Guldi, and M. Prato: Synthesis, characterization, and photoinduced electron transfer in functionalized single wall carbon nanohorns. J. Am. Chem. Soc. 129, 3938–3945 (2007).

    Article  CAS  Google Scholar 

  69. N. Karousis, N. Tagmatarchis, and D. Tasis: Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110, 5366–5397 (2010).

    Article  CAS  Google Scholar 

  70. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato: Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006).

    Article  CAS  Google Scholar 

  71. A.A. Stefopoulos, C.L. Chochos, M. Prato, G. Pistolis, K. Papagelis, F. Petraki, S. Kennou, and J.K. Kallitsis: Novel hybrid materials consisting of regioregular poly(3-octylthiophene)s covalently attached to single-wall carbon nanotubes. Chem. Eur. J. 14, 8715–8724 (2008).

    Article  CAS  Google Scholar 

  72. C.L. Chochos, A.A. Stefopoulos, S. Campidelli, M. Prato, V.G. Gregoriou, and J.K. Kallitsis: Immobilization of oligoquinoline chains on single-wall carbon nanotubes and their optical behavior. Macromolecules 41, 1825–1830 (2008).

    Article  CAS  Google Scholar 

  73. A.A. Stefopoulos, S.N. Kourkouli, S. Economopoulos, F. Ravani, A. Andreopoulou, K. Papagelis, A. Siokou, and J.K. Kallitsis: Polymer and hybrid electron accepting materials based on a semiconducting perfluorophenylquinoline. Macromolecules 43, 4827–4828 (2010).

    Article  CAS  Google Scholar 

  74. S.N. Kourkouli, A. Siokou, A.A. Stefopoulos, F. Ravani, T. Plocke, M. Müller, J. Maultzsch, C. Thomsen, K. Papagelis, and J.K. Kallitsis: Electronic properties of semiconducting polymer-functionalized single wall carbon nanotubes. Macromolecules 46, 2590–2598 (2013).

    Article  CAS  Google Scholar 

  75. B. de Boer, U. Stalmach, P.F. van Hutten, C. Melzer, V.V. Krasnikov, and G. Hadziioannou: Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers. Polymer 42, 9097–9109 (2001).

    Article  Google Scholar 

  76. M.H. van der Veen, B. de Boer, U. Stalmach, K.I. van de Wetering, and G. Hadziioannou: Donor-acceptor diblock copolymers based on PPV and C60: synthesis, thermal properties, and morphology. Macromolecules 37, 3673–3684 (2004).

    Article  CAS  Google Scholar 

  77. S. Barrau, T. Heiser, F. Richard, C. Brochon, C. Ngov, K. van de Wetering, G. Hadziioannou, D.V. Anokhin, and D. Ivanov: A. Self-assembling of novel fullerene-grafted donor-acceptor rod-coil block copolymers. Macromolecules 41, 2701–2710 (2008).

    Article  CAS  Google Scholar 

  78. K. Sivula, Z.T. Ball, N. Watanabe, and J.M.J. Frechet: Amphiphilic diblock copolymer compatibilizers and their effect on the morphology and performance of polythiophene:fullerene solar cells. Adv. Mater. 18, 206–210 (2006).

    Article  CAS  Google Scholar 

  79. F. Richard, C. Brochon, N. Leclerc, D. Eckhardt, T. Heiser, and G. Hadziioannou: Design of a linear poly(3-hexylthiophene)/fullerene-based donor-acceptor rod-coil block copolymer. Macromol. Rapid. Commun. 29, 885–891 (2008).

    Article  CAS  Google Scholar 

  80. M. Li, P. Xu, J. Yang, and S. Yang: Donor-π-acceptor double-cable polythiophenes bearing fullerene pendant with tunable donor/acceptor ratio: a facile postpolymerization. J. Mater. Chem. 20, 3953–3960 (2010).

    Article  CAS  Google Scholar 

  81. M. Dante, C. Yang, B. Walker, F. Wudl, and T.-Q. Nguyen: Self-assembly and charge-transport properties of a polythiophene-fullerene triblock copolymer. Adv. Mater. 22, 1835–1839 (2010).

    Article  CAS  Google Scholar 

  82. R.C. Hiorns, P. Iratçabal, D. Bégué, A. Khoukh, R. De Bettignies, J. Leroy, M. Firon, C. Sentein, H. Martinez, H. Preud’homme, and C. Dagron-Lartigau: Alternatively linking fullerene and conjugated polymers. J. Polym. Sci. A: Polym. Chem. 47, 2304–2317 (2009).

    Article  CAS  Google Scholar 

  83. J.U. Lee, J.W. Jung, T. Emrick, T.P. Russell, and W.H. Jo: Synthesis of C60-end capped P3HT and its application for high performance of P3HT/PCBM bulk heterojunction solar cells. J. Mater. Chem. 20, 3287–3294 (2010).

    Article  CAS  Google Scholar 

  84. B. Gholamkhass, T.J. Peckham, and S. Holdcroft: Poly(3-hexylthiophene) bearing pendant fullerenes: aggregation vs. self-organization. Polym. Chem. 1, 708–719 (2010).

    Article  CAS  Google Scholar 

  85. J.U. Lee, A. Cirpan, T. Emrick, T.P. Russell, and W.H. Jo: Synthesis and photophysical property of well-defined donor-acceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene. J. Mater. Chem. 19, 1483–1489 (2009).

    Article  CAS  Google Scholar 

  86. C. Yang, J.K. Lee, A.J. Heeger, and F. Wudl: Well-defined donor-acceptor rod-coil diblock copolymers based on P3HT containing C60: the morphology and role as a surfactant in bulk-heterojunction solar cells. J. Mater. Chem. 19, 5416–5423 (2009).

    Article  CAS  Google Scholar 

  87. E. Bicciocchi, M. Chen, E. Rizzardo, and K.P. Ghiggino: Synthesis of a rod-coil block copolymer incorporating PCBM. Polym. Chem. 4, 53–56 (2013).

    Article  CAS  Google Scholar 

  88. M. Chen, M. Li, H. Wang, S. Qu, X. Zhao, L. Xie, and S. Yang: Side-chain substitution of poly(3-hexylthiophene) (P3HT) by PCBM via postpolymerization: an intramolecular hybrid of donor and acceptor. Polym. Chem. 4, 550–557 (2013).

    Article  CAS  Google Scholar 

  89. N. Sary, F. Richard, C. Brochon, N. Leclerc, P. Lévêque, J.-N. Audinot, S. Berson, T. Heiser, G. Hadziioannou, and R. Mezzenga: A new supramolecular route for using rod-coil block copolymers in photovoltaic applications. Adv. Mater. 22, 763–768 (2010).

    Article  CAS  Google Scholar 

  90. C. Renaud, S.-J. Mougnier, E. Pavlopoulou, C. Brochon, G. Fleury, D. Deribew, G. Portale, E. Cloutet, S. Chambon, L. Vignau, and G. Hadziioannou: Block copolymer as a nanostructuring agent for high efficiency and annealing-free bulk heterojunction organic solar cells. Adv. Mater. 24, 2196–2201 (2012).

    Article  CAS  Google Scholar 

  91. A. Laiho, R.H.A. Ras, S. Valkama, J. Ruokolainen, R. Österbacka, and O. Ikkala: Control of self-assembly by charge-transfer complexation between c60 fullerene and electron donating units of block copolymers. Macromolecules 39, 7648–7653 (2006).

    Article  CAS  Google Scholar 

  92. M. Wang, A.J. Heeger, and F. Wudl: Self-assembly of a fullerene poly(3-hexylthiophene) dyad. Small 7, 298–301 (2011).

    Article  CAS  Google Scholar 

  93. D.A. Kamkar, M. Wang, F. Wudl, and N. Thuc-Quyen: Single nanowire OPV properties of a fullerene-capped P3HT dyad investigated using conductive and photoconductive AFM. ACS Nano 6, 1149–1157 (2012).

    Article  CAS  Google Scholar 

  94. M. Wang and F. Wudl: Top-down meets bottom-up: organized donor-acceptor heterojunctions for organic solar cells. J. Mater. Chem. 22, 24297–24314 (2012).

    Article  CAS  Google Scholar 

  95. M. Yan, S.X. Cai, and J.F.W. Keana: Photochemical and thermal reactions of C60 with N-succinimidyl 4-azido-2,3,5,6-tetrafluorobenzoate: a new method for functionalization of C60. J. Org. Chem. 59, 5951–5954 (1994).

    Article  CAS  Google Scholar 

  96. M. Cases, M. Duran, J. Mestres, N. Martín, and M. Solà: Mechanism of the addition reaction of alkyl azides to [60]fullerene and the subsequent N2 extrusion to form monoimino-[60]fullerenes. J. Org. Chem. 66, 433–442 (2001).

    Article  CAS  Google Scholar 

  97. S.J. Pastine, D. Okawa, B. Kessler, M. Rolandi, M. Llorente, A. Zettl, and J.M.J. Fréchet: A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J. Am. Chem. Soc. 130, 4238–4239 (2008).

    Article  CAS  Google Scholar 

  98. K. Suggs, D. Reuven, and X.-Q. Wang: Electronic properties of cycloaddition-functionalized graphene. J. Phys. Chem. C 115, 3313–3317 (2011).

    Article  CAS  Google Scholar 

  99. L.-H. Liu and M. Yan: Perfluorophenyl azides: new applications in surface functionalization and nanomaterial synthesis. Acc. Chem. Res. 43, 1434–1443 (2010).

    Article  CAS  Google Scholar 

  100. B. Yameen, T. Puerckhauer, J. Ludwig, I. Ahmed, O. Altintas, L. Fruk, A. Colsmann, and C. Barner-Kowollik: π-conjugated polymer-fullerene covalent hybrids via ambient conditions diels-alder ligation. Small 10, 3091–3098 (2014).

    Article  CAS  Google Scholar 

  101. R.C. Hiorns, E. Cloutet, E. Ibarboure, A. Khoukh, H. Bejbouji, L. Vignau, and H. Cramail: Synthesis of donor-acceptor multiblock copolymers incorporating fullerene backbone repeat units. Macromolecules 43, 6033–6044 (2010).

    Article  CAS  Google Scholar 

  102. L. Perrin, M. Legros, and R. Mercier: Design of a series of polythiophenes containing C60 groups: synthesis and optical and electrochemical properties. Macromolecules 48, 323–336 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Social Fund (ESF) and Greek National Resources through the “ARISTEIA” Action of the “Operational Programme Education and Lifelong Learning” project “Design and Development of New Electron Acceptor Polymeric and Hybrid Materials and their Application in Organic Photovoltaics—DENEA 2780”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joannis K. Kallitsis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallitsis, J.K., Anastasopoulos, C. & Andreopoulou, A.K. Functional semiconductors targeting copolymer architectures and hybrid nanostructures. MRS Communications 5, 365–382 (2015). https://doi.org/10.1557/mrc.2015.42

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.42

Navigation