Skip to main content
Log in

Bistable switching of polymer stabilized cholesteric liquid crystals between transparent and scattering modes

  • Polymers/Soft Matter Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We report on the ability to switch an optical material composed of a polymer stabilized cholesteric liquid crystal (polymer stabilized cholesteric texture, PSCT) between stable transparent (reflective) and scattering modes. The degree of scattering is controllable with the strength of the applied electric field. The mechanism for bistable switching of the PSCT is distinguished from prior examinations by employing electromechanical displacement of a stabilizing polymer network. The stable transparent (reflective) or scattering modes are induced with a variety of driving schemes employing both alternating and direct current fields. The relative degree of scattering can be varied to allow for grayscale control potentially useful in smart window and display applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. P.G. de Gennes and J. Prost: The Physics of Liquid Crystals (Oxford University Press, Oxford, UK, 1993).

    Google Scholar 

  2. S.T. Wu and D.-K. Yang: Reflective Liquid Crystal Displays (Wiley, West Sussex, UK, 2001).

    Google Scholar 

  3. D.-K. Yang, C.-C. Chien, and J.W. Donna: Cholesteric liquid crystal/ polymer dispersion for hazy-free light shutters. Appl. Phys. Lett. 60, 310–3104 (1992).

    Article  Google Scholar 

  4. D.-K. Yang, J.W. Doane, Z. Yaniv, and J. Glasser: Cholesteric reflective display: drive scheme and contrast. Appl. Phys. Lett. 64, 1905–1907 (1994).

    Article  CAS  Google Scholar 

  5. D.-K. Yang, J.L. West, L.-C. Chien, and J.W. Doane: Control of reflectivity and bistability in displays using cholesteric liquid crystals. J. Appl. Phys. 76, 1331–1333 (1994).

    Article  CAS  Google Scholar 

  6. M.-H. Lu: Bistable reflective cholesteric liquid crystal display. J. Appl. Phys. 81, 1063–1066 (1997).

    Article  CAS  Google Scholar 

  7. B. Taheri, J.W. Doane, D. Davis, and D. St. John: Optical properties of bistable cholesteric reflective displays. SID Int. Symp. Digest of Technical Papers, vol. 27, pp. 39–42, 1996.

    Google Scholar 

  8. J. Anderson, P. Watson, J. Ruth, V. Sergan, and P. Bos: Fast frame rate bistable cholesteric texture reflective displays. SID Int. Symp. Digest of Technical Papers, vol. 29, pp. 806–809, 1998.

    Article  Google Scholar 

  9. D.-K. Yang: Flexible bistable cholesteric reflective displays. J. Disp. Technol. 2, 3–37 (2006).

    Article  Google Scholar 

  10. C.-C. Li, H.-Y. Tseng, T.-W. Pai, Y.-C. Wu, W.-H. Hsu, H.-C. Jau, C.-W. Chen, and T.-H. Lin: Bistable cholesteric liquid crystal light shutter with multielectrode driving. Appl. Opt. 53, E33–E37 (2014).

    Article  Google Scholar 

  11. C.-Y. Huang, K.-Y. Fu, K.-Y. Lo, and M.-S. Tsai: Bistable transflective cholesteric light shutters. Opt. Express 11, 560–565 (2003).

    Article  CAS  Google Scholar 

  12. F.-C. Lin and W. Lee: Color-reflective dual frequency cholesteric liquid crystal displays and their drive schemes. Appl. Phys. Express 4, 112201 (2011).

    Article  Google Scholar 

  13. P. Kumar, S.-W. Kang and S.H. Lee: Advanced bistable cholesteric light shutter with dual frequency nematic liquid crystal. Opt. Mater. Express 2, 1121–1134 (2012).

    Article  CAS  Google Scholar 

  14. M. Xu and D.-K. Yang: Dual frequency cholesteric liquid crystals. Appl. Phys. Lett. 70, 720–722 (1997).

    Article  CAS  Google Scholar 

  15. C.-H. Wen and S.T. Wu: Dielectric heating effects of dual-frequency liquid crystals. Appl. Phys. Lett. 86, 231104 (2005).

    Article  Google Scholar 

  16. F. Zhang and D.-K. Yang: Polymer stabilized cholesteric dichroic dye displays. SID Symp. Digest of Technical Papers, vol. 33, pp. 469–471, 2002.

    Article  CAS  Google Scholar 

  17. Y.-H. Lin, H. Ren, Y.-H. Fan, Y.-H. Wu, and S.-T. Wu: Polarizationindependent and fast-response phase modulation using a normal-mode polymer-stabilized cholesteric texture. J. Appl. Phys. 98, 043112 (2005).

    Article  Google Scholar 

  18. H. Ren and S.-T. Wu: Reflective reversed-mode polymer stabilized cholesteric texture light switches. J. Appl. Phys. 92, 797–800 (2002).

    Article  CAS  Google Scholar 

  19. Y. Yin, W. Li, H. Cao, J. Guo, B. Li, S. He, C. Ouyang, M. Cao, H. Huang, and H. Yang: Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymerstabilized cholesteric texture. J. Appl. Polym. Sci. 111, 1353–1357 (2009).

    Article  CAS  Google Scholar 

  20. V.P. Tondiglia, L.V. Natarajan, C.A. Bailey, M.M. Duning, R.L. Sutherland, D.-k Yang, A. Voevodin, T.J. White, and T.J. Bunning: Electrically induced bandwidth broadening in polymer stabilized cholesteric liquid crystals. J. Appl. Phys. 110, 053109/1–053109/5338 (2011).

    Article  CAS  Google Scholar 

  21. V.P. Tondiglia, L.V. Natarajan, C.A. Bailey, M.E. McConney, K.M. Lee, T.J. Bunning, R. Zola, H. Nemati, D.-k Yang, and T.J. White: Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals. Opt. Mater. Express 4, 1465–1472 (2014).

    Article  CAS  Google Scholar 

  22. K.M. Lee, V.P. Tondiglia, M.E. McConney, L.V. Natarajan, T.J. Bunning, and T.J. White: Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals. ACS Photonics 1, 1033–1041 (2014).

    Article  CAS  Google Scholar 

  23. H. Nemati, S. Liu, R. Zola, V.P. Tondiglia, K.M. Lee, T.J. White, T.J. Bunning, and D.-k Yang: Mechanism of electrically induced photonic band gap broadening in polymer stabilized cholesteric liquid crystals with negative dielectric anisotropies. Soft Matter 11, 1208–1213 (2015).

    Article  CAS  Google Scholar 

  24. M.E. McConney, V.P. Tondiglia, L.V. Natarajan, K.M. Lee, T.J. White, and T.J. Bunning: Electrically induced color changes in polymer–stabilized cholesteric liquid crystals. Adv. Opt. Mater. 1, 417–421 (2013).

    Article  Google Scholar 

  25. T.J. White, K.M. Lee, M.E. McConney, V.P. Tondiglia, L.V. Natarajan, and T.J. Bunning: Stimuli–responsive cholesteric liquid crystal composites for optics and photonics. SID Symp. Digest of Technical Papers, vol. 45, pp. 555–558, 2014.

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge funding from the Materials and Manufacturing Directorate of the Air Force Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. White.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.M., Tondiglia, V.P. & White, T.J. Bistable switching of polymer stabilized cholesteric liquid crystals between transparent and scattering modes. MRS Communications 5, 223–227 (2015). https://doi.org/10.1557/mrc.2015.40

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.40

Navigation