Skip to main content
Log in

Fluorescence properties of fluor molecules confined within nanoscale pores in a polymer matrix

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We demonstrate that fluorescence properties of organic fluors embedded in a porous polystyrene matrix are highly sensitive to the average pore size and pore-size distribution of the matrix. The effect can be understood as two different types of confinement imposed to the fluor molecules by the matrix. First, there is geometrical confinement that restricts the fluor oscillations due to its physical contact with a pore wall. Second, there is an electronic confinement due to a local polarization of the wall material by molecular dipoles. The effects lead to a spectral shift and enhancement of the fluorescence intensity of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Table I.
Table II.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  1. B. Hoetzer, I.L. Medintz, and N. Hildebrandt: Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications. Small 8, 2297 (2012).

    Article  CAS  Google Scholar 

  2. M.I.J. Stich, L.H. Fischer, and O.S. Wolfbeis: Multiple fluorescent chemical sensing and imaging. Chem. Soc. Rev. 39, 3102 (2010).

    Article  CAS  Google Scholar 

  3. M. Schaeferling: The art of fluorescence imaging with chemical sensors Angew. Chem. Int. Ed. 51, 3532 (2012).

    Article  CAS  Google Scholar 

  4. L. Prodi, F. Bolletta, M. Montalti, and N. Zaccheroni: Luminescent chemosensors for transition metal ions. Coord. Chem. Rev. 205, 59 (2000).

    Article  CAS  Google Scholar 

  5. J.F. Callan, A.P. de Silva, and D.C. Magri: Luminescent sensors and switches in the early 21st century. Tetrahedron 61, 8551 (2005).

    Article  CAS  Google Scholar 

  6. Z. Liu, W. He, and Z. Guo: Metal coordination in photoluminescent sensing. Chem. Soc. Rev. 42, 1568 (2013).

    Article  Google Scholar 

  7. A.S. Davydov: Theory of Molecular Excitons (Plenum, New York, 1971).

    Book  Google Scholar 

  8. H. Bücher and H. Kuhn: Schetbe aggregate formation of cyanine dyes in monolayers. Chem. Phys. Lett. 6, 183 (1970).

    Article  Google Scholar 

  9. F. Wurthner, T.E. Kaiser, and C.R. Saha-Muller: J-Aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed. 50, 3376 (2011).

    Article  Google Scholar 

  10. F. Márquez, H. García, E. Palomares, L. Fernández, and A. Corma: Spectroscopic evidence in support of the molecular orbital confinement concept: case of anthracene incorporated in zeolites. J. Am. Chem. Soc. 122, 6520 (2000).

    Article  Google Scholar 

  11. E.-B. Cho, D.O. Volkov, and I. Sokolov: Ultrabright fluorescent mesoporous silica nanoparticles. Small 6, 2314 (2010).

    Article  CAS  Google Scholar 

  12. I. Sokolov and D.O. Volkov: Ultrabright fluorescent mesoporous silica particles. J. Mater. Chem. 20, 4247 (2010).

    Article  CAS  Google Scholar 

  13. F. Márquez and M.J. Sabater: Emission frequency modulation by electronic confinement effect: Congo Red incorporated within a dendritic structure J. Phys. Chem. B 109, 16593 (2005).

    Article  Google Scholar 

  14. V.N. Bliznyuk, C.E. Duval, O.G. Apul, A.F. Seliman, S.M. Husson, and T.A. DeVol: High porosity scintillating polymer resins for ionizing radiation sensor applications. Polymer 56, 271 (2015).

    Article  CAS  Google Scholar 

  15. F. Seliman, V.N. Bliznyuk, S.M. Husson, and T.A. DeVol: Synthesis, characterization and properties of 2-(1-naphthyl)-4-viny-5-phenyloxazole and vinyl-DB18-crown-6 for low-level quantification of α and β emitters. Radiobioassay and Radiochemical Measurements Conference (RRMC), October 27–31, 2014, Knoxville, TN.

    Google Scholar 

  16. E.C. Wade, A.F. Seliman, S.M. Husson, V.N. Bliznyuk, and T.A. DeVol: Stability of scintillating beads for ultra-trace level detection of alpha and beta emitting radionuclides. Radiobioassay and Radiochemical Measurements Conference (RRMC), October 21–25, 2013, Rohnert Park, CA.

    Google Scholar 

  17. L.H. Sperling: Introduction to Physical Polymer Science (John Wiley & Sons, New York, 1992).

    Google Scholar 

  18. J. Heier, R. Steiger, R. Hany, and F. Nuesch: Template synthesis of cyanine dye H-aggregates on nanostructured [6,6]-phenyl C-61-butyric acid methyl ester substrates. Phys. Chem. Chem. Phys. 13 15714 (2011).

    Article  CAS  Google Scholar 

  19. B. Tian, G. Zerbi, and K. Müllen: Electronic and structural properties of poly-paraphenylenevinylene from the vibrational spectra. J. Chem. Phys. 95, 3198 (1991).

    Article  CAS  Google Scholar 

  20. C. Castiglioni, M. Tommasini, and G. Zerbi: Raman spectroscopy of polyconjugated molecules and materials: confinement effect in one and two dimensions. Phil. Trans. R. Soc. Lond. A 362, 2425 (2004).

    Article  CAS  Google Scholar 

  21. C. Czeslik, Y.J. Kim, and J. Jonas: Raman spectroscopy studies of liquids confined to porous silica glasses. J. Phys. IV 10, 103 (2000).

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Defense Threat Reduction Agency, Basic Research Award #HDTRA1-12-1-0012, to Clemson University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery N. Bliznyuk.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.38

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bliznyuk, V.N., Seliman, A.F., Husson, S.M. et al. Fluorescence properties of fluor molecules confined within nanoscale pores in a polymer matrix. MRS Communications 5, 347–252 (2015). https://doi.org/10.1557/mrc.2015.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.38

Navigation