Skip to main content
Log in

Real-time imaging of chromophore alignment in photorefractive polymer devices through multiphoton microscopy

  • Polymers/Soft Matter Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A model with which to predict the effect of coplanar electrode geometry on diffraction uniformity in photorefractive polymer display devices was developed. Assumptions made in the standard use cases are no longer valid in the regions of extreme electric fields present in this type of device. Using electric-field induced second-harmonic generation through multiphoton microscopy, the physical response in regions of internal electric fields which fall outside the standard regimes of validity were probed. Adjustments to the standard model were made and the results of the new model corroborated through holographic four-wave mixing measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  1. S. Ducharme, J.C. Scott, R.J. Twieg, and W.E. Moerner: Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66, 1846 (1991).

    Article  CAS  Google Scholar 

  2. K. Meerholz, B.L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian: A photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 371, 497 (1994).

    Article  CAS  Google Scholar 

  3. M. Eralp, J. Thomas, G. Li, S. Tay, A. Schulzgen, R.A. Norwood, N. Peyghambarian, and M. Yamamoto: Photorefractive polymer device with video-rate response time operating at low voltages. Opt. Lett. 31, 1408 (2006).

    Article  CAS  Google Scholar 

  4. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C.W. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R.A. Norwood, M. Yamamoto, and N. Peyghambarian: Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80 (2010).

    Article  CAS  Google Scholar 

  5. C.W. Christenson, C. Greenlee, B. Lynn, J. Thomas, P.-A. Blanche, R. Voorakaranam, P. St. Hilaire, L. Lacomb Jr., R.A. Norwood, M. Yamamoto, and N. Peyghambarian: Interdigitated coplanar electrodes for enhanced sensitivity in a photorefractive polymer. Opt. Lett. 36, 3377 (2011).

    Article  CAS  Google Scholar 

  6. Ch. Bosshard, J. Hulliger, M. Florsheimer, and P. Gunter: Organic Nonlinear Optical Materials (CRC Press, London, England, 2001).

    Google Scholar 

  7. K.D. Singer, M.G. Kuzyk, W.R. Holland, J.E. Sohn, S.J. Lalama, R.B. Comizzoli, H.E. Katz, and M.L. Schilling: Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films. Appl. Phys. Lett. 53, 1800 (1988).

    Article  CAS  Google Scholar 

  8. O. Ostroverkhova, A. Stickrath, and K.D. Singer: Electric field-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers. J. Appl. Phys. 91, 9481 (2002).

    Article  CAS  Google Scholar 

  9. G. Lüpke, C. Meyer, C. Ohlhoff, H. Kurz, S. Lehmann, and G. Marowsky: Optical second-harmonic generation as a probe of electric-field-induced perturbation of centrosymmetric media. Opt. Lett. 20, 1997 (1995).

    Article  Google Scholar 

  10. A.V. Vannikov, Y.G. Gorbunova, A.D. Grishina, and A.Y. Tsivadze: Photoelectric, nonlinear optical, and photorefractive properties of polymer composites based on supramolecular ensembles of Ru(II) and Ga (III) complexes with tetra-15-crown-5-phthalocyanine. Prot. Met. Phys. Chem. Surf. 49, 57 (2013).

    Article  CAS  Google Scholar 

  11. R.W. Boyd: Nonlinear Optics, 3rd ed. (Elsevier Science, Philadelphia, 2008).

    Google Scholar 

  12. L.R. Dalton, A.W. Harper, and B.H. Robinson: The role of London forces in defining noncentrosymmetric order of high dipole moment-high hyperpolarizability chromophores in electrically poled polymeric thin films. Proc. Natl. Acad. Sci. USA 94, 4842 (1997).

    Article  CAS  Google Scholar 

  13. K. Kieu, S. Mehravar, R. Gowda, R.A. Norwood, and N. Peyghambarian: Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber. Biomed. Opt. Express 4, 334 (2013).

    Article  Google Scholar 

  14. K. Kieu and M. Mansuripur: Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube /polymer composite. Opt. Lett. 32, 2242 (2007).

    Article  CAS  Google Scholar 

  15. M. Mansuripur: Classical Optics and its Application, 2nd ed. (Cambridge University Press, Cambridge, England, 2009).

    Book  Google Scholar 

  16. O. Ostroverkhova and K.D. Singer: Space-charge dynamics in photorefractive polymers. J. Appl. Phys., 92, 1727 (2002).

    Article  CAS  Google Scholar 

  17. J.S. Schildkraut and Y. Cui: Zero-order and first-order theory of the formation of space-charge gratings in photoconductive polymers. J. Appl. Phys. 72, 5055 (1992).

    Article  CAS  Google Scholar 

  18. J.S. Schildkraut and A.V. Buettner: Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers. J. Appl. Phys 72, 1888 (1992).

    Article  CAS  Google Scholar 

  19. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery: Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, Cambridge, England, 2007).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the DoD SMART Scholarship program, TRIF support through the State of Arizona, AFOSR contract FA9550-10-1-0207, and the National Science Foundation through CIAN NSF ERC under grant #EEC-0812072. Additionally, they would like to thank undergraduate researchers Alan Yeh and Maryam Tanbal from the University of Arizona and Joshua Miller from the University of Albany for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Alexandre Blanche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynn, B., Miles, A., Mehravar, S. et al. Real-time imaging of chromophore alignment in photorefractive polymer devices through multiphoton microscopy. MRS Communications 5, 243–250 (2015). https://doi.org/10.1557/mrc.2015.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.31

Navigation