Skip to main content
Log in

Assembly and alignment of conjugated polymers: materials design, processing, and applications

  • Polymers/Soft Matter Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Conjugated polymers (CPs) are widely investigated because of their intriguing optical and semiconducting properties in various optoelectronic device applications. Because of the one-dimensional p-orbital overlap along the main chain, CPs exhibit strong anisotropy in optoelectronic characteristics. Therefore, macroscopic assembly and alignment of CPs are essential to fully utilize their potential properties in real device applications. Here we review various processing strategies and material design principles for efficient CP alignment that result in highly anisotropic optical and electronic characteristics. Furthermore, we thoroughly review the incorporation of aligned CPs layers in organic light-emitting diodes, organic thin film transistors, and organic photovoltaic devices. The achieved macroscopic CP alignment has increased the optoelectronic properties and greatly improved device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.

Similar content being viewed by others

References

  1. M. Gross, D. Muller, H. Nothofer, U. Scherf, D. Neher, C. Brauchle, and K. Meerholz: Improving the performance of doped pi-conjugated polymmers for use in organic light-emitting diodes. Nature 405, 661 (2000).

    CAS  Google Scholar 

  2. B.R. Lee, E.D. Jung, J.S. Park, Y.S. Nam, S.H. Min, B.-S. Kim, K.-M. Lee, J.-R. Jeong, R.H. Friend, J.-S. Kim, S.O. Kim, and M.H. Song: Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer. Nat. Commun. 5, 4840 (2014).

    CAS  Google Scholar 

  3. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M.L. Chabinyc, R.J. Kline, M.D. McGehee, and M.F. Toney: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328 (2006).

    CAS  Google Scholar 

  4. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, and D.M. de Leeuw: Two-dimensional charge transport in selforganized, high-mobility conjugated polymers. Nature 401, 685 (1999).

    CAS  Google Scholar 

  5. Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree: A strong regioregularity effect in self-organizing conjugated polymer films and highefficiency polythiophene:fullerene solar cells. Nat. Mater. 5, 197 (2006).

    CAS  Google Scholar 

  6. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li: Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 3, 649 (2009).

    CAS  Google Scholar 

  7. S.H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, and A.J. Heeger: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3, 297 (2009).

    CAS  Google Scholar 

  8. F.C. Krebs: Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 394 (2009).

    CAS  Google Scholar 

  9. B.-G. Kim, E.J. Jeong, J.W. Chung, S. Seo, B. Koo, and J. Kim: A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics. Nat. Mater. 12, 659 (2013).

    CAS  Google Scholar 

  10. V. Cimrová, M. Remmers, D. Neher, and G. Wegner: Polarized light emission from LEDs prepared by the Langmuir–Blodgett technique. Adv. Mater. 8, 146 (1996).

    Google Scholar 

  11. J. Kim, S.K. McHugh, and T.M. Swager: Nanoscale fibrils and grids: aggregated structures from rigid-rod conjugated polymers. Macromolecules 32, 1500 (1999).

    CAS  Google Scholar 

  12. T. Kanetake, K. Ishikawa, T. Koda, Y. Tokura, and K. Takeda: Highly oriented polydiacetylene films by vacuum deposition. Appl. Phys. Lett. 51, 1957 (1987).

    CAS  Google Scholar 

  13. H. Heil, T. Finnberg, N. von Malm, R. Schmechel, and H. Seggern: The influence of mechanical rubbing on the field-effect mobility in polyhexylthiophene. J. Appl. Phys. 93, 1636 (2003).

    CAS  Google Scholar 

  14. C.Y. Yang, C. Soci, D. Moses, and A.J. Heeger: Aligned rrP3HT film: structural order and transport properties. Synth. Met. 155, 639 (2005).

    CAS  Google Scholar 

  15. L. Biniek, S. Pouget, D. Djurado, E. Gonthier, K. Tremel, N. Kayunkid, E. Zaborova, N. Crespo-Monteiro, O. Boyron, N. Leclerc, S. Ludwigs, and M. Brinkmann: High-temperature rubbing: a versatile method to align π-conjugated polymers without alignment substrate. Macromolecules 47, 3871 (2014).

    CAS  Google Scholar 

  16. Z. Zheng, K.-H. Yim, M.S.M. Saifullah, M.E. Welland, R.H. Friend, J.-S. Kim, and W.T.S. Huck: Uniaxial alignment of liquid-crystalline conjugated polymers by nanoconfinement. Nano Lett. 7, 987 (2007).

    CAS  Google Scholar 

  17. M. Aryal, K. Trivedi, and W.W. Hu: Nano-confinement induced chain alignment in ordered P3HT nanostructures defined by nanoimprint lithography. ACS Nano 3, 3085 (2009).

    CAS  Google Scholar 

  18. G. Ding, Y. Wu, Y. Weng, W. Zhang, and Z. Hu: Solvent-assistant room temperature nanoimprinting-induced molecular orientation in Poly(3-hexylthiophene) nanopillars. Macromolecules 46, 8638 (2013).

    CAS  Google Scholar 

  19. H. Sirringhaus, R.J. Wilson, R.H. Friend, M. Inbasekaran, W. Wu, E.P. Woo, M. Grell, and D.D.C. Bradley: Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquidcrystalline phase. Appl. Phys. Lett. 77, 406 (2000).

    CAS  Google Scholar 

  20. H.-R. Tseng, L. Ying, B.B.Y. Hsu, L.A. Perez, C.J. Takacs, G.C. Bazan, and A.J. Heeger: High mobility field effect transistors based on macroscopically oriented regioregular copolymers. Nano Lett. 12, 6353 (2012).

    CAS  Google Scholar 

  21. H.-R. Tseng, H. Phan, C. Luo, M. Wang, L.A. Perez, S.N. Patel, L. Ying, E.J. Kramer, T.-Q. Nguyen, G.C. Bazan, and A.J. Heeger: High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26, 2993 (2014).

    CAS  Google Scholar 

  22. C. Luo, A.K.K. Kyaw, L.A. Perez, S. Patel, M. Wang, B. Grimm, G.C. Bazan, E.J. Kramer, and A.J. Heeger: General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett. 14, 2764 (2014).

    CAS  Google Scholar 

  23. J. Wu, A.F. Gross, and S.H. Tolbert: Host–guest chemistry using an oriented mesoporous host: alignment and isolation of a semiconducting polymer in the nanopores of an ordered silica matrix. J. Phys. Chem. 103, 2374 (1999).

    CAS  Google Scholar 

  24. W.C. Molenkamp, M. Watanabe, H. Miyata, and S.H. Tolbert: Highly polarized luminescence from optical quality films of a semiconducting polymer aligned within oriented mesoporous silica. J. Am. Chem. Soc. 126, 4476 (2004).

    CAS  Google Scholar 

  25. I.B. Martini, I.M. Craig, W.C. Molenkamp, H. Miyata, S.H. Tolbert, and B.J. Schwartz: Controlling optical gain in semiconducting polymers with nanoscale chain positioning and alignment. Nat. Nanotechnol. 2, 647 (2007).

    CAS  Google Scholar 

  26. D. Iacopino, P. Lovera, A. O’Riordan, and G. Redmond: Highly polarized luminescence from β-phase-rich poly(9,9-dioctylfluorene) nanofibers. J. Phys. Chem. 118, 5437 (2014).

    CAS  Google Scholar 

  27. T.W. Hagler, K. Pakbaz, K.F. Voss, and A.J. Heeger: Enhanced order and electronic delocalization in conjugated polymers oriented by gel processing in polyethylene. Phys. Rev. 44, 8652 (1991).

    CAS  Google Scholar 

  28. C. Weder, C. Sarwa, C. Bastiaansen, and P. Smith: Highly polarized luminescence from oriented conjugated polymer/polyethylene blend films. Adv. Mater. 9, 1035 (1997).

    CAS  Google Scholar 

  29. Z. Zhu and T.M. Swager: Conjugated polymer liquid crystal solutions: control of conformation and alignment. J. Am. Chem. Soc. 124, 9670 (2002).

    CAS  Google Scholar 

  30. C.-C. Kuo, C.-T. Wang, and W.-C. Chen: Highly-aligned electrospun luminescent nanofibers prepared from polyfluorene/PMMA blends: fabrication, morphology, photophysical properties and sensory applications. Macromol. Mater. Eng. 293, 999 (2008).

    CAS  Google Scholar 

  31. M. Campoy-Quiles, Y. Ishii, H. Sakai, and H. Murata: Highly polarized luminescence from aligned conjugated polymer electrospun nanofibers. Appl. Phys. Lett. 92, 213305 (2008).

    Google Scholar 

  32. K. Yin, L. Zhang, C. Lai, L. Zhong, S. Smith, H. Fong, and Z. Zhu: Photoluminescence anisotropy of uni-axially aligned electrospun conjugated polymer nanofibers of MEH-PPV and P3HT. J. Mater. Chem. 21, 444 (2011).

    CAS  Google Scholar 

  33. J.C. Wittmann and B. Lotz: Epitaxial crystallization of polymers on organic and polymeric substrates. Prog. Polym. Sci. 15, 909 (1990).

    CAS  Google Scholar 

  34. C. De Rosa, C. Park, E. Thomas, and B. Lotz: Microdomain patterns from directional eutectic solidification and epitaxy. Nature 405, 433 (2000).

    Google Scholar 

  35. M. Brinkmann and J.-C. Wittmann: Orientation of regioregular poly (3-hexylthiophene) by directional solidification: a simple method to reveal the semicrystalline structure of a conjugated polymer. Adv. Mater. 18, 860 (2006).

    CAS  Google Scholar 

  36. C. Müller, M. Aghamohammadi, S. Himmelberger, P. Sonar, M. Garriga, A. Salleo, and M. Campoy-Quiles: One-step macroscopic alignment of conjugated polymer systems by epitaxial crystallization during spincoating. Adv. Funct. Mater. 23, 2368 (2013).

    Google Scholar 

  37. B. Dörling, V. Vohra, T.T. Dao, M. Garriga, H. Murata, and M. Campoy-Quiles: Uniaxial macroscopic alignment of conjugated polymer systems by directional crystallization during blade coating. J. Mater. Chem. 2, 3303 (2014).

    Google Scholar 

  38. J.H. Burrhoughes, D.D.C. Bradely, A.R. Brown, R.N. Markay, R.H. Friend, P.L. Burns, and A.B. Holmes: Light emitting diodes based on conjugated polymers. Nature 347, 539 (1990).

    Google Scholar 

  39. M. Grell and D.D.C. Bradley: Polarized luminescence from oriented molecular materials. Adv. Mater. 11, 895 (1999).

    CAS  Google Scholar 

  40. P. Dyreklev, M. Berggren, O. Inganäs, M.R. Andersson, O. Wennerström, and T. Hjertberg: Polarized electroluminescence from an oriented substituted polythiophene in a light emitting diode. Adv. Mater. 7, 43 (1995).

    CAS  Google Scholar 

  41. M. Hamaguchi and K. Yoshino: Polarized electroluminescence from rubbingaligned poly(2,5dinonyloxy1,4 phenylenevinylene) films. Appl. Phys. Lett. 67, 3381 (1995).

    CAS  Google Scholar 

  42. M. Grell, D.D.C. Bradley, M. Inbasekaran, and E.P. Woo: Glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications. Adv. Mater. 9, 798 (1997).

    CAS  Google Scholar 

  43. M. Grell, W. Knoll, D. Lupo, A. Meisel, T. Miteva, D. Neher, H.-G. Nothofer, U. Scherf, and A. Yasuda: Blue polarized electroluminescence from a liquid crystalline polyfluorene. Adv. Mater. 11, 671 (1999).

    CAS  Google Scholar 

  44. P.W.M. Blom, M.J.M. de Jong, and J.J.M. Vleggaar: Electron and hole transport in poly(p-phenylene vinylene) devices. Appl. Phys. Lett. 68, 3308 (1996).

    CAS  Google Scholar 

  45. M. Jandke, P. Strohriegl, J. Gmeiner, W. Brütting, and M. Schwoerer: Polarized electroluminescence from rubbing-aligned poly(p-phenylenevinylene). Adv. Mater. 11, 1518 (1999).

    CAS  Google Scholar 

  46. K.S. Whitehead, M. Grell, D.D.C. Bradley, M. Inbasekaran, and E.P. Woo: Polarized emission from liquid crystal polymers. Synth. Met. 111–112, 181 (2000).

    Google Scholar 

  47. K.S. Whitehead, M. Grell, D.D.C. Bradley, M. Jandke, and P. Strohriegl: Highly polarized blue electroluminescence from homogeneously aligned films of poly(9,9-dioctylfluorene). Appl. Phys. Lett. 76, 2964 (2000).

    Google Scholar 

  48. T. Miteva, A. Meisel, W. Knoll, H.G. Nothofer, U. Scherf, D.C. Müller, K. Meerholz, A. Yasuda, and D. Neher: Improving the performance of polyfluorene-based organic light-emitting diodes via end-capping. Adv. Mater. 13, 565 (2001).

    Google Scholar 

  49. S.-F. Chung, T.-C. Wen, W.-Y. Chou, and T.-F. Guo: High luminescence polarized polymer light-emitting diodes fabricated using aligned polyfluorene. Jpn. J. Appl. Phys. 45, L60 (2006).

    CAS  Google Scholar 

  50. C.H. Lee, G.W. Kang, J.W. Jeon, W.J. Song, and C. Seoul: Blue electroluminescence and dynamics of charge carrier recombination in a vacuum-deposited poly( p-phenylene) thin film. Thin Solid Films 363, 306 (2000).

    CAS  Google Scholar 

  51. T.-F. Guo, S.-C. Chang, Y. Yang, R.C. Kwong, and M.E. Thompson: Highly efficient electrophosphorescent polymer light-emitting devices. Org. Electron. 1, 15 (2000).

    CAS  Google Scholar 

  52. K. Sakamoto, K. Miki, M. Misaki, K. Sakaguchi, M. Chikamatsu, and R. Azumi: Very thin photoalignment films for liquid crystalline conjugated polymers: application to polarized light-emitting diodes. Appl. Phys. Lett. 91, 183509 (2007).

    Google Scholar 

  53. M.L. Swiggers, G. Xia, J.D. Slinker, A.A. Gorodetsky, G.G. Malliaras, R.L. Headrick, B.T. Weslowski, R.N. Shashidhar, and C.S. Dulcey: Orientation of pentacene films using surface alignment layers and its influence on thin-film transistor characteristics. Appl. Phys. Lett. 79, 1300 (2001).

    CAS  Google Scholar 

  54. M. Redecker, D.D.C. Bradley, M. Inbasekaran, and E.P. Woo: Mobility enhancement through homogeneous nematic alignment of a liquidcrystalline polyfluorene. Appl. Phys. Lett. 74, 1400 (1999).

    CAS  Google Scholar 

  55. M.J. Lee, D. Gupta, N. Zhao, M. Heeney, I. McCulloch, and H. Sirringhaus: Anisotropy of charge transport in a uniaxially aligned and chain-extended, high-mobility, conjugated polymer semiconductor. Adv. Funct. Mater. 21, 932 (2011).

    CAS  Google Scholar 

  56. B.H. Hamadani, D.J. Gundlach, I. McCulloch, and M. Heeney: Undoped polythiophene field-effect transistors with mobility of 1 cm2V−1s−1. Appl. Phys. Lett. 91, 243512 (2007).

    Google Scholar 

  57. Y.-Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus: Downscaling of selfaligned, all-printed polymer thin-film transistors. Nat. Nanotechnol. 2, 784 (2007).

    CAS  Google Scholar 

  58. G. Derue, D.A. Serban, P. Leclère, S. Melinte, P. Damman, and R. Lazzaroni: Controlled nanorubbing of polythiophene thin films for field-effect transistors. Org. Electron. 9, 821 (2008).

    CAS  Google Scholar 

  59. R. Zhu, A. Kumar, and Y. Yang: Polarizing organic photovoltaics. Adv. Mater. 23, 4193 (2011).

    CAS  Google Scholar 

  60. B. Park, Y.H. Huh, and J.C. Shin: In-plane anisotropy of photovoltaic effects in aligned polymer solar cells. Sol. Energy Mater. Sol. Cells 95, 3543 (2011).

    CAS  Google Scholar 

  61. Y.H. Huh, J.C. Shin, Y.C. Kim, and B. Park: Reflective type Solar-LCDs by using polarizing polymer solar cells. Opt. Express 20, A278 (2012).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by US Department of Energy (DOE), Office of Basic Energy Sciences, as part of the Center for Solar and Thermal Energy Conversion in Complex Materials, an Energy Frontier Research Center (grant no. DE-SC0000957).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsang Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, K., Yu, Y., Kwon, M.S. et al. Assembly and alignment of conjugated polymers: materials design, processing, and applications. MRS Communications 5, 169–189 (2015). https://doi.org/10.1557/mrc.2015.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.25

Navigation