Skip to main content
Log in

Laser liftoff of gallium arsenide thin films

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The high cost of single-crystal III–V substrates limits the use of gallium arsenide (GaAs) and related sphalerite III–V materials in many applications, especially photovoltaics. However, by making devices from epitaxially grown III–V layers that are separated from a growth substrate, one can recycle the growth substrate to reduce costs. Here, we show damage-free removal of an epitaxial single-crystal GaAs film from its GaAs growth substrate using a laser that is absorbed by a smaller band gap, pseudomorphic indium gallium arsenide nitride layer grown between the substrate and the GaAs film. The liftoff process transfers the GaAs film to a flexible polymer substrate, and the transferred GaAs layer is indistinguishable in structural quality from its growth substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. M. Konagai, M. Sugimoto, and K. Takahashi: High efficiency GaAs thin film solar cells by peeled film technology. J. Cryst. Growth 45, 277 (1978).

    Article  CAS  Google Scholar 

  2. E. Yablonovitch, T. Gmitter, J.P. Harbison, and R. Bhat: Extreme selectivity in the lift-off of epitaxial GaAs films. Appl. Phys. Lett. 51, 2222 (1987).

    Article  CAS  Google Scholar 

  3. J.J. Schermer, P. Mulder, G.J. Bauhuis, M.M.A.J. Voncken, J. van Deelen, E. Haverkamp, and P.K. Larsen: Epitaxial lift-off for large area thin film III/ V devices. Phys. Status Solidia 202, 501 (2005).

    Article  CAS  Google Scholar 

  4. C.W. Cheng, K.T. Shiu, N. Li, S.J. Han, L. Shi, and D.K. Sadana: Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat. Commun. 4, 1577 (2013).

    Article  Google Scholar 

  5. G.J. Hayes and B.M. Clemens: Rapid liftoff of epitaxial thin films. J. Mater. Res. 28, 2564 (2013).

    Article  CAS  Google Scholar 

  6. W.S. Wong, T. Sands, and N.W. Cheung: Damage-free separation of GaN thin films from sapphire substrates. Appl. Phys. Lett. 72, 599 (1998).

    Article  CAS  Google Scholar 

  7. W.S. Wong, T. Sands, N.W. Cheung, M. Kneissl, D.P. Bour, P. Mei, L.T. Romano, and N.M. Johnson: Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl. Phys. Lett. 75, 1360 (1999).

    Article  CAS  Google Scholar 

  8. W.S. Wong, A.B. Wengrow, Y. Cho, A. Salleo, N.J. Quitoriano, N.W. Cheung, and T. Sands: Integration of GaN thin films with dissimilar substrate materials by Pd–In metal bonding and laser lift-off. J. Electron. Mater. 28, 1409 (1999).

    Article  CAS  Google Scholar 

  9. E.A. Stach, M. Kelsch, E.C. Nelson, W.S. Wong, T. Sands, and N.W. Cheung: Structural and chemical characterization of free-standing GaN films separated from sapphire substrates by laser lift-off. Appl. Phys. Lett. 77, 1819 (2000).

    Article  CAS  Google Scholar 

  10. M. Henini: Dilute Nitride Semiconductor (Elsevier, London, UK, 2004), pp. 1–81.

    Google Scholar 

  11. S.R. Kurtz, A.A. Allerman, E.D. Jones, J.M. Gee, J.J. Banas, and B.E. Hammons: InGaAsN solar cells with 1.0 eV band gap, lattice matchedto GaAs. Appl. Phys. Lett. 74, 729 (1999).

    Article  CAS  Google Scholar 

  12. R. Kudrawiec: Alloying of GaNxAs1-x with InNxAs1-x: a simple formulafor the band gap parametrization of Ga1-yInyNxAs1-x alloys. J. Appl.Phys. 101, 023522 (2007).

    Article  Google Scholar 

  13. K. Hjort: Sacrificial etching of III-V compounds for micromechanicaldevices. J. Micromech. Microeng. 6, 370 (1996).

    Article  CAS  Google Scholar 

  14. B.D. Cullity and S.R. Stock: Elements of X-ray Diffraction, 2nd ed. (Prentice-Hall, Massachusetts, USA, 1978), pp. 233–280, 512–513.

    Google Scholar 

  15. G.J. Hayes: Paths toward lower cost, high efficiency thin film solar cells. Ph.D. Dissertation, Stanford University, Stanford, CA, 2014, pp. 7–33.

    Google Scholar 

  16. S. Schwarz, B. Kempshall, and L. Giannuzzi: Avoiding the curtaining effect: backside milling by FIB INLO. Microsc. Microanal. 9(Suppl. 2), 116 (2003).

    Article  Google Scholar 

  17. V. Kaganer: Crystal truncation rods in kinematical and dynamical x-ray diffraction theories. Phys. Rev. B 75, 245425 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Foundation, and the ARCS Foundation, for supporting Garrett Hayes through fellowships; David Susnitzky, Fangfang Mao, and Robert Mendez of Evans Analytical Group in Sunnyvale, CA for their work in preparing and imaging the TEM cross-sections; John Goodfellow and Karel Urbanek for assisting with the laser experiments; Grey Christoforo for thermal modeling; Xiaoqing Xu and Vijay Parameshwaran for MOCVD assistance; Robert Chen for his expertise and assistance with the PL measurements; Tomas Sarmiento for assistance with the Band Anticrossing model calculations; Bob Hammond for his mentorship; and Alberto Salleo for continual guidance and free roam of his laser laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett J. Hayes.

Electronic supplementary material

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayes, G.J., Clemens, B.M. Laser liftoff of gallium arsenide thin films. MRS Communications 5, 1–5 (2015). https://doi.org/10.1557/mrc.2015.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.2

Navigation